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Least Squares Regression
assumptions and some clarity
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Ordinary Least Squares (OLS) Linear Regression 
 

In response to the following question … 
 
From: "Voltolini" <jcvoltol@infocad.com.br> 
To: "Statistica Group Discussion" <statistica@eGroups.com> 
Sent: Monday, October 30, 2000 6:58 PM 
Subject: [STATISTICA] Regression help ? 
 
> Hi, I am starting to use the some regression analysis and I am a bit confused about the  
> assumptions. 
> About normality and homoscedasticity, what exactly I need to test? 
> The real variables or just the residuals? or both ? 
 

My response … 
 
Hello Voltolini 
 
There is one important assumption for the use of least-squares, linear regression that is generally 
phrased as 
 
"The population means of the values of the dependent variable Y at each value of 
the independent variable X are assumed to be on a straight line". 
 
This statement implies that at each value of X, there is a distribution of Y values for which the 
mean is used as the value that characterises the average value of each Y at X. This immediately 
implies that Y itself is a random variable, possessing equal-interval, additive concatenation units 
(the use of the mean implies additivity of units). 
 
A further set of assumptions that are also made when using linear regression 
are (taken from Pedhazur, 1997, pp. 33-34) 
 
1. The mean of the errors (residuals (Yik-Yik')) for each observation of the Yi  on Xi, over many 
replications, is zero. 
2. Errors associated with one observation of Yi on Xi are independent of errors associated with 
any other observation Yj on Xi (serial autocorrelation) 
3. The variance of the errors of Y, at all values of X, is constant (homoscedasticity) 
4. The values of the errors of Y are independent of the values of X. 
5. The distribution of errors (residuals) over all values of Y are normally distributed. 
 
From the above, there seems to be no a priori requirement for Y itself to be normally distributed. 
It seems that the assumption noted above (in bold) could be met by a variable whose values are, 
for example, uniformly distributed rather than normally distributed. The normality assumption 
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seems to be confined explicitly to the errors of prediction of Y, not Y itself. In fact, many 
textbooks only mention the assumptions within this framework. 
 
Cohen and Cohen (1983, p.52, 3-4) state … “It should be noted that no assumptions about the 
shape of the distribution of X and the total distribution of Y per se are necessary, and that, of 
course, the assumptions are made about the population and not the sample”. 
 
Pedhazur and Pedhazur-Schmelkin (1991, p.392) only speak of assumptions concerning the 
residuals from a regression analysis (as does Pedhazur (1997)). And, Draper and Smith (1998, 
p. 34) state “each response observation (Y) is assumed to come from a normal distribution 
centred vertically at the level implied by the assumed model. The variance of each normal 
distribution is assumed to be the same, 2”. They further specify three major assumptions: 
 
“We now make the basic assumptions that in the model: 
 

                      Yi = 0 + 1Xi + i                   where i = 1 …n 
 

1. i  is a random variable with mean zero and variance 2 (unknown); that is 

i) = 0, V(i) = 2                           (E = expected value of = the mean) 
 
 

2. i and j are uncorrelated,  i  j, so that cov(I ,j) = 0. Thus  
 

        E(Yi) = 0 + 1Xi       and      V(Yi) = 0                   
 

         and Yi and Yj,  i  j, are uncorrelated 
 
 

3. i is a normally distributed random variable, with mean 0 and variance 2 by assumption 1. 
That is,  

             i ~ N(0, 2 )     
 

Under this assumption, i and j are not only uncorrelated but necessarily independent.” 
 
 
A graphical representation of the essence of these assumptions is given on the next page … 
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The Graphical Representation of Assumptions concerning OLS regression 

Y

X
X 1 X 2 X 3 X 4

Observed Data Points

True Line
0 +  1X

The Expected 
(M ean) Value of Y 4

 
HOWEVER - I will admit that I am curious as to whether meeting all 5 assumptions implies 
that Y will necessarily be normally distributed. I have often seen or heard statements from 
various individuals that indicate that either Y must be normally distributed, or that the 
assumptions for regression only pertain to the distributions of errors (residuals) as in 1-5 above. 
Draper and Smith (quoted above) do state that the population of Y values at each level of X must 
be normally distributed. But, to satisfy my own curiosity in all this, I generated two datasets for 
X and Y variables, where the Y observations have been sampled from a uniform distribution at 
each value at X, and where the Y observations have been sampled from a normal distribution at 
each value of X. X was varied between 1 and 10, with 400 Y observations at each value of X. X 
and Y have been generated such that they correlate at virtually 1.0 (ensuring near perfect 
linearity). I then analysed each dataset for departures from the assumptions 1-5 above. 
 
Dataset 1: uniform distribution of Y at each value of X 
Dataset 2: normal distribution of Y at each value of X 
X is a “fixed-value” independent variable that varies between 1 and 10, in steps of 1.0 
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Dataset 1 Analysis Results 
 
The graph below is a representation of the population uniform distribution from which I have 
drawn my 400 samples per value of X. Note, that my mean value for each sampled distribution 
of Y values for each Xi is virtually the population value that is required to fit the linear equation 
with almost no error.  
 

Y

X
X1 X2 X3 X4

Observed Data Points

True Line
0 + 1X

The Expected 
(Mean) Value of Y4

Theoretical Uniform 
Population Distribution
from which I have
sampled 400 observations

The Regression Analysis estimated parameters are: 
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  b0 = estimated 0 b1 = estimated 1 
The graph of the relationship between X and Y looks like … 
 

Linear Regression - Uniformly distributed Y values

Y = .495385 + .999996 * X

Correlation: r = .995
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The histogram of the Y variable (over all values of X) is: 

 
Examining each of the Assumptions 1-5 from page 1 above, we have … 

Histogram of total Y - uniformly distributed at each value of X
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1. The mean of the errors (residuals (Yik-Yik')) for each observation of the Yi  on Xi, over 
many replications, is zero. 
 
Here, I examine the raw residuals for each value of Xi = 1 to 10 
 

 
 
Note that the means for each sampling distribution of Y at Xi = 1 to 10 are near 0.0 
 
So, assumption #1 is confirmed. 
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2. Errors associated with one observation of Yi  on Xi are independent of errors associated 
with any other observation Yj on Xi (serial autocorrelation) 
 
Here we need to compute the autocorrelation function for the Residuals of Y, in sequential order 
from observation 1 to 4000. An autocorrelation is the correlation of a series with itself, shifted by 
a particular lag of k observations. That is,for a lag of 1, we move the first observation in our 
series to the bottom of the series, then correlate each value in this new series with the original 
series values … 

 
e.g. for lag = 1 
Original series  New Series 
 Y1           Y2  
 Y2         Y3 

Y3         Y4 
Y4         Y5 
Y5            Y6 
.          . 
Y3999         Y4000 
Y4000             Y1 

 
If we do this for lags from 1 to 999 (STATISTICA can only cope with a function that uses lag-
size 999 or less) we see the following … 
 

Autocorrelation Function - lags = 1 to 999 - over 4000 observations

RESIDUAL
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what this shows is that there is no serial substantive dependences between any of the 
observations.  Note, we might also have used the Durbin-Watson test for serial autocorrelation.  
 
The Durbin-Watson statistic is useful for evaluating the presence or absence of a serial 
correlation of residuals (i.e., whether or not residuals for adjacent cases are correlated, indicating 
that the observations or cases in the data file are not independent).  Note that all statistical 
significance tests in multiple regression assume that the data consist of a random sample of 
independent observations.  If this is not the case, then the estimates (B coefficients) may be more 
unstable than the significance levels would lead one to believe.  Intuitively, it should be clear 
that, for example, giving the same questionnaire to the same person 100 times will yield less 
information about the general population than administering that questionnaire to a random 
sample of 100 different individuals, who complete the questionnaire only once.  In the former 
case, observations are not independent of each other (the same respondent will give similar 
responses in repeated questionnaires), while in the latter case, the observations are independent 
(different people). 
 
The results of this test are: 
 

 
 
Since the distribution of d lies between 0 and 4, the d value lies almost at mid-point in this 
distribution (which is symmetric about 2.0). Draper and Smith (1998) pp. 181-192 provide 
significance tests for d. Suffice it to say that we are unable to reject the null hypothesis of no 
autocorrelation here. But, really, with the size of autocorrelation observed – we really don’t need 
this test. Further, the graph above really says it all! 
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3. The variance of the errors of Y, at all values of X, is constant (homoscedasticity) 
 
Here we will compute the variance of the variances of each sampling distribution of the residuals 
of Y at each value of Xi. These variances should all be the same value under this assumption. 
Because of sampling error, they will vary – but, we want to be assured that they will only vary 
marginally across values of Xi, hence we compute the variance parameter. This should be near 
zero. 
 
The variance of variances is 0.000011. This is sufficiently low to give us some confidence that 
we have met the requirements of this assumption in our data. We can also plot the variances 
against each value of X … 
 

Plotting Residual Variances against X 

Uniform distribution of Y at each value of X
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We might also think that we can take into account the mean of the variances, and perhaps use a t-
test with a null hypothesis that the mean of the sample of variances has been drawn from a 
population distribution whose mean is 0.0. BUT, doing this indicates that the null hypothesis is 
rejected at p = 5.92061E-14 (p < 0.000001). This is because the variance is so low in relation to 
the mean that virtually any mean value above 0.0 will be significant in this case, even with just 9 
degrees of freedom. 
 
So, my advice is to just compute the variance of variances, perhaps using the range also (which 
in our case was 0.009) and, finally, plotting the graph as above. 
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4. The values of the errors of Y are independent of the values of X. 
 
Here we will correlate the residual error for every value of Y across all values of X (400 values 
of Y for each X = 4000 cases), each pair or observations consists of a Y residual and a value of 
X. This correlation should be zero 
  
The correlation is computed to be –0.0000001988. 
 
This is strong evidence for the validity of this assumption. 
 

Raw residuals vs. X

Correlation: r = -.0000001988
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5. The distribution of errors (residuals) over all values of Y are normally distributed. 
 
Here, we plot the histogram of residual errors of Y over all values of X (4000) observations. We 
can overlay the expected normal distribution for these data (based upon the observed mean and 
SD of the residuals). 
 

Histogram (Regress_Uniform_Residuals.sta 10v*4000c)
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Here, we have a serious departure from normality. We can confirm this with a one-sample 
continuous variable (the raw residuals) Kolmogorov-Smirnov test – which yields a D value of 
0.0556, with p< 0.000001, actually 2.3326E-223), which is a comprehensive rejection of the null 
hypothesis of “normality”. 
 
So, we cannot meet this assumption by sampling from a uniform distribution. 
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A final observation is the distribution of our actual values of Y, across all Xs.. 
 

Histogram of Observed Y values
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This demonstrates the uniform sampling for Y values at each value of Xi. 
 
In summary, we could not confirm one assumption, that of the normal distribution of the 
residuals. 
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5. The distribution of errors (residuals) over all values of Y are normally distributed 
 
 Given this assumption (along with the others) is required for significance testing of estimated 
parameters that assume that sampling errors are normally distributed, we would not be able to 
implement this kind of significance test using these data. 
 
If we examine the second dataset, that samples Y values from a Normal population distribution 
at each value of Xi, we obtain … 
 
Dataset 2 Analysis Results  
The graph (using a categorized histogram plot) of the relationship between X and Y looks like … 
 

The Distribution of Y values at each value of X
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The scatterplot between X and Y looks like … 
 

 
The Regression analysis estimated parameters are: 
 

 
 

b0 = estimated 0 b1 = estimated 1 
 
 

Linear Regression - Normally distributed Y values 

 Y = -.045564 + 1.007973* X

Correlation: r = .830887
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Examining each of the Assumptions 1-5 from page 2 above, we have … 
 
1. The mean of the errors (residuals (Yik-Yik')) for each observation of the Yi  on Xi, over 
many replications, is zero. 
 
Here, I examine the raw residuals for each value of Xi = 1 to 10 
 

 
 
Note that the means for each sampling distribution of Y at Xi = 1 to 10 are near 0.0 
 
So, assumption #1 is confirmed. 
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2. Errors associated with one observation of Yi  on Xi are independent of errors associated 
with any other observation Yj on Xi (serial autocorrelation) 
 
Here we need to compute the autocorrelation function for the Residuals of Y, in sequential order 
from observation 1 to 4000. 
 

Autocorrelation Function (Normal Y)

RESIDUAL
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The Durbin-Watson statistic is  
 

 
 
Since the distribution of d lies between 0 and 4, the d value lies almost at mid-point in this 
distribution (which is symmetric about 2.0). Draper and Smith (1998) pp. 181-192 provide 
significance tests for d. Suffice it to say that we are unable to reject the null hypothesis of no 
autocorrelation here. But, really, with the size of autocorrelation observed – we really don’t need 
this test. Further, the graph above really says it all! 
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3. The variance of the errors of Y, at all values of X, is constant (homoscedasticity) 
 
Here we will compute the variance of the variances of each sampling distribution of the residuals 
of Y at each value of Xi. These variances should all be the same value under this assumption. 
Because of sampling error, they will vary – but, we want to be assured that they will only vary 
marginally across values of Xi, hence we compute the variance parameter. This should be near 
zero. 
 
The variance of variances is 0.081420 This is sufficiently low to give us some confidence that 
we have met the requirements of this assumption in our data. 
 
 
4. The values of the errors of Y are independent of the values of X. 
 
Here we will correlate the residual error for every value of Y across all values of X (400 values 
of Y for each X = 4000 cases), each pair or observations consists of a Y residual and a value of 
X. This correlation should be zero 
  
The correlation is computed to be –.0000000146596 
 
This is strong evidence for the validity of this assumption. 
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5. The distribution of errors (residuals) over all values of Y are normally distributed. 
 
Here, we plot the histogram of residual errors of Y over all values of X (4000) observations. We 
can overlay the expected normal distribution for these data (based upon the observed mean and 
SD of the residuals). 
 

Histogram of Residuals of Y
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Unlike the previous dataset, these residuals are almost perfectly normally distributed. We have 
strong evidence here that the residuals are indeed normally distributed. 
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Finally, if we look at the distribution of all observed Y values over the range of X, we have .. 
 

Histogram of Observed Y values
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which shows that the sample of observations of the Y variable is itself normally distributed.  
 
 
So, this example shows that in this particular simulation, the variable that met all regression 
assumptions was itself normally distributed. However, what happens if we constrain our 
sampling to restricted values of X. That is, what happens if our sample of values for Y is non-
normal, due to our poor sampling of X?  
 
Well, let’s sample X at values 1, 2, and 9 and 10. We retain the normal sampling properties  of 
each Yi  …  
 
The distribution of observed Y values is now … 
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Histogram of Observed Y values

Restricted X of values 1, 2, 9, 10
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This is definitely non-normal.  Let’s now look at our tests of the 5 assumptions … 
 
1. The mean of the errors (residuals (Yik-Yik')) for each observation of the Yi  on Xi, over 
many replications, is zero. 
 
Here, I examine the raw residuals for each value of Xi = 1,2,9,& 10 
 

 
 
Note that the means for each sampling distribution of Y at Xi are near 0.0 
 
So, assumption #1 is confirmed. 
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2. Errors associated with one observation of Yi  on Xi are independent of errors associated 
with any other observation Yj on Xi (serial autocorrelation) 
 
Here we need to compute the autocorrelation function for the Residuals of Y, in sequential order 
from observation 1 to 1600 
 

Autocorrelation Function
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I’ve also computed the Durbin-Watson – this tells us all we need to know  
 

 
 
The serial correlation is near zero – which confirms assumption #2 
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3. The variance of the errors of Y, at all values of X, is constant (homoscedasticity) 
 
Here we will compute the variance of the variances of each sampling distribution of the residuals 
of Y at each value of Xi. These variances should all be the same value under this assumption. 
Because of sampling error, they will vary – but, we want to be assured that they will only vary 
marginally across values of Xi, hence we compute the variance parameter. This should be near 
zero. 
 
The variance of variances is 0.03371 This is sufficiently low to give us some confidence that 
we have met the requirements of this assumption in our data. 
 
 
4. The values of the errors of Y are independent of the values of X. 
 
Here we will correlate the residual error for every value of Y across all values of X (400 values 
of Y for each X = 1600 cases), each pair or observations consists of a Y residual and a value of 
X. This correlation should be zero 
  
The correlation is computed to be –.0000000673575 
 
This is strong evidence for the validity of this assumption. 
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5. The distribution of errors (residuals) over all values of Y are normally distributed. 
 
Here, we plot the histogram of residual errors of Y over all values of X (1600) observations. We 
can overlay the expected normal distribution for these data (based upon the observed mean and 
SD of the residuals). 

 
The Kolmogorov-Smirnov test is non-significant at p > 0.20 – indicating no evidence for a 
departure from normality. 
 

Restricted X values (1, 2, 9, 10)

Histogram of residuals of Y for these X
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So, even though our observed sampling distribution of the Y values 
was definitely non-normal, we were able to meet all 1-5 assumptions 

regarding the residuals. 
 
Of course, this kind of subsampling introduces problems of another kind – but, it is important to 
demonstrate that even where we have purposely distorted our sampling so as to fool ourselves 
into thinking that we may not have been sampling from a normal population distribution, we 
were still able to meet the 5 key assumptions for regression, which are based upon the 
distribution of error, and not on the distribution of our dependent variable. This confirms 
Cohen’s statement quoted on page 1, the shape of the distribution of the population of Y is not an 
indicator of the validity of a regression – especially where it is inferred from the sample 
distribution of Y values. 
 
[Addendum – 17th August, 2005] from Dr S.A. Butler, Corus Research, Development and 
Technology, Swinden Technology Centre, Rotherham, South Yorkshire 
“Unfortunately, some people will insist on using Excel for statistical work even when much 
better software is available to them, so I have recently had to look at the regression 
facilities available in Excel.  I discovered that, when regression is carried out via Tools / 
Data Analysis / Regression, there is an option to produce a Normal Probability Plot, but this 
is a plot of the Y-values, NOT the residuals”. 
 
So, users of the Excel Statistical Toolbox - beware! 
 
Of course, I haven't mentioned outlier and influence analysis which is also part and parcel of 
regression analysis - but this is another issue in its own right. 
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