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Ordinary Least Squares (OLS) Linear Regression

In response to the following question ...

From: "Voltolini" <jcvoltol@infocad.com.br>

To: "Statistica Group Discussion" <statistica@eGroups.com>
Sent: Monday, October 30, 2000 6:58 PM

Subject: [STATISTICA] Regression help ?

> Hi, | am starting to use the some regression analysis and I am a bit confused about the
> assumptions.

> About normality and homoscedasticity, what exactly I need to test?

> The real variables or just the residuals? or both ?

My response ...

Hello Voltolini

There is one important assumption for the use of least-squares, linear regression that is generally
phrased as

"The population means of the values of the dependent variable Y at each value of
the independent variable X are assumed to be on a straight line".

This statement implies that at each value of X, there is a distribution of Y values for which the
mean is used as the value that characterises the average value of each Y at X. This immediately
implies that Y itself is a random variable, possessing equal-interval, additive concatenation units
(the use of the mean implies additivity of units).

A further set of assumptions that are also made when using linear regression
are (taken from Pedhazur, 1997, pp. 33-34)

1. The mean of the errors (residuals (Yic-Yix')) for each observation of the Y; on Xj, over many
replications, is zero.

2. Errors associated with one observation of Y; on X are independent of errors associated with
any other observation Y; on X; (serial autocorrelation)

3. The variance of the errors of Y, at all values of X, is constant (homoscedasticity)

4. The values of the errors of Y are independent of the values of X.

5. The distribution of errors (residuals) over all values of Y are normally distributed.

From the above, there seems to be no a priori requirement for Y itself to be normally distributed.
It seems that the assumption noted above (in bold) could be met by a variable whose values are,
for example, uniformly distributed rather than normally distributed. The normality assumption
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seems to be confined explicitly to the errors of prediction of Y, not Y itself. In fact, many
textbooks only mention the assumptions within this framework.

Cohen and Cohen (1983, p.52, 3-4) state ... “It should be noted that no assumptions about the
shape of the distribution of X and the total distribution of Y per se are necessary, and that, of
course, the assumptions are made about the population and not the sample”.

Pedhazur and Pedhazur-Schmelkin (1991, p.392) only speak of assumptions concerning the
residuals from a regression analysis (as does Pedhazur (1997)). And, Draper and Smith (1998,
p. 34) state “each response observation (Y) is assumed to come from a normal distribution
centred vertically at the level implied by the assumed model. The variance of each normal

distribution is assumed to be the same, ¢’ ”. They further specify three major assumptions:

“We now make the basic assumptions that in the model:
Yi=p+ X+ & wherei=1...n
1. & is a random variable with mean zero and variance G’ (unknown); that is

E(g)=0, V(¢)=0" (E = expected value of = the mean)

2. & and & are uncorrelated, 1# J, so that cov(& ,&) = 0. Thus
E(Y) =4+ /X and  V(Y)=0

and Y and Yj, 1# ], are uncorrelated

3. & is a normally distributed random variable, with mean 0 and variance 6> by assumption 1.
That is,

&~N(0, %)

Under this assumption, & and & are not only uncorrelated but necessarily independent.”

A graphical representation of the essence of these assumptions is given on the next page ...
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The Graphical Representation of Assumptions concerning OLS regression

Observed Data Points

The Expected
(Mean) Value of Y,

True Line

B+ piX i

X, X, X, X,

X

HOWEVER - I will admit that I am curious as to whether meeting all 5 assumptions implies
that Y will necessarily be normally distributed. I have often seen or heard statements from
various individuals that indicate that either Y must be normally distributed, or that the
assumptions for regression only pertain to the distributions of errors (residuals) as in 1-5 above.
Draper and Smith (quoted above) do state that the population of Y values at each level of X must
be normally distributed. But, to satisfy my own curiosity in all this, I generated two datasets for
X and Y variables, where the Y observations have been sampled from a uniform distribution at
each value at X, and where the Y observations have been sampled from a normal distribution at
each value of X. X was varied between 1 and 10, with 400 Y observations at each value of X. X
and Y have been generated such that they correlate at virtually 1.0 (ensuring near perfect
linearity). I then analysed each dataset for departures from the assumptions 1-5 above.

Dataset 1: uniform distribution of Y at each value of X
Dataset 2: normal distribution of Y at each value of X
Xis a “fixed-value” independent variable that varies between 1 and 10, in steps of 1.0
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Dataset 1 Analysis Results

The graph below is a representation of the population uniform distribution from which I have
drawn my 400 samples per value of X. Note, that my mean value for each sampled distribution
of Y values for each X; is virtually the population value that is required to fit the linear equation
with almost no error.

Theoretical Uniform
Population Distribution

from which I have \
>

sampled 400 observations

Observed Data Points

The Expected
(Mean) Value of Y,

True Line

Byt BX

The Regression Analysis estimated parameters are:
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ji® Regrezzion Summary for Dependent Yariable: Y

ETITR IS B= 99512862 R*= 99028096 Adjusted RZ= 99027853
211 F(1.3998)=4074E 7 p<0.0000 5td_Error of estimate: 28462

St. Emr. St Emr.
M=4000 BETA of BETA B of B t[3998] p-level
Intercpt -495385 009722 hR0.9569
995129 001559 /.EIHHEIEIE 001567 638.2473 0.00

b0 = estimated ffy bl = estimated [
The graph of the relationship between X and Y looks like ...

Linear Regression - Uniformly distributed Y values
Y =.495385 + .999996 * X
Correlation: r = .995
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1. The mean of the errors (residuals (Yix-Yix')) for each observation of the Y; on Xj, over

plications, is zero.

Here, I examine the raw residuals for each value of X; -1 o 10

ii§i T able of Marginal Means [regress uniform_residuals. sta)

BASIC M=4000 [Mo miszing data in dep. var. list]
STATS
RESIDUAL RESIDUAL RESIDUAL
Meansz N VYariance
010576 084334

- 000214 400 0852593
-.005146 400 076503
- 008407 400 078004
-002190 400 082776
-.009108 400 AOFFH97
006491 400 078895
-005695 400 085572
- 012395 400 082462
Moy 400 079678
All Grps. -.000000 4000 080983

Note that the means for each sampling distribution of Y at Xj - | ¢, 19 are near 0.0

So, assumption #1 is confirmed.
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2. Errors associated with one observation of Y; on X; are inde
with any other observation Y; on X; (serial autocorrelation)

Here we need to compute the autocorrelation function for the Residuals of Y, in sequential order
from observation 1 to 4000. An autocorrelation is the correlation of a series with itself, shifted by
a particular lag of k observations. That is,for a lag of 1, we move the first observation in our
series to the bottom of the series, then correlate each value in this new series with the original
series values ...

e.g. for lag=1

Original series New Series
Y] Y2
Y> Y;
Y; Yy
Y4 Ys
Ys Ye
Y3999 Y 2000
Y 4000 Y

If we do this for lags from 1 to 999 (STATISTICA can only cope with a function that uses lag-
size 999 or less) we see the following ...

Autocorrelation Function - lags = 1 to 999 - over 4000 observations
RESIDUAL
1000

900

800

700

600

500

Lag size

400

300

200

100

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Autocorrelation
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what this shows is that there is no serial substantive dependences between any of the
observations. Note, we might also have used the Durbin-Watson test for serial autocorrelation.

The Durbin-Watson statistic is useful for evaluating the presence or absence of a serial
correlation of residuals (i.e., whether or not residuals for adjacent cases are correlated, indicating
that the observations or cases in the data file are not independent). Note that all statistical
significance tests in multiple regression assume that the data consist of a random sample of
independent observations. If this is not the case, then the estimates (B coefficients) may be more
unstable than the significance levels would lead one to believe. Intuitively, it should be clear
that, for example, giving the same questionnaire to the same person 100 times will yield less
information about the general population than administering that questionnaire to a random
sample of 100 different individuals, who complete the questionnaire only once. In the former
case, observations are not independent of each other (the same respondent will give similar
responses in repeated questionnaires), while in the latter case, the observations are independent
(different people).

The results of this test are:

il Durbinw atzon d [regress._sta)
MULTIPLE ELUEEEIRST RNl R TR

REGRESS.
Durbin- Senal
Watzon d Cour.
E stimate 2.039018 - 019622

Since the distribution of d lies between 0 and 4, the d value lies almost at mid-point in this
distribution (which is symmetric about 2.0). Draper and Smith (1998) pp. 181-192 provide
significance tests for d. Suffice it to say that we are unable to reject the null hypothesis of no
autocorrelation here. But, really, with the size of autocorrelation observed — we really don’t need
this test. Further, the graph above really says it all!
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3. The variance of the errors of Y, at all values of X, is constant (homoscedasticity)

Here we will compute the variance of the variances of each sampling distribution of the residuals
of Y at each value of X;. These variances should all be the same value under this assumption.
Because of sampling error, they will vary — but, we want to be assured that they will only vary

marginally across values of Xj, hence we compute the variance parameter. This should be near
zZero.

The variance of variances is 0.000011. This is sufficiently low to give us some confidence that
we have met the requirements of this assumption in our data. We can also plot the variances
against each value of X ...

Plotting Residual Variances against X
Uniform distribution of Y at each value of X
0.11

0.10

0.09

0.08 °

Residual Variance of Y
[ ]

0.07

0.06

We might also think that we can take into account the mean of the variances, and perhaps use a t-
test with a null hypothesis that the mean of the sample of variances has been drawn from a
population distribution whose mean is 0.0. BUT, doing this indicates that the null hypothesis is
rejected at p = 5.92061E-14 (p < 0.000001). This is because the variance is so low in relation to

the mean that virtually any mean value above 0.0 will be significant in this case, even with just 9
degrees of freedom.

So, my advice is to just compute the variance of variances, perhaps using the range also (which
in our case was 0.009) and, finally, plotting the graph as above.
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4. The values of the errors of Y are independent of the values of X|

Here we will correlate the residual error for every value of Y across all values of X (400 values
of Y for each X = 4000 cases), each pair or observations consists of a Y residual and a value of
X. This correlation should be zero

The correlation is computed to be —0.0000001988.

This is strong evidence for the validity of this assumption.

Raw residuals vs. X
Correlation: r = -.0000001988
0.6

04

0.2}

0.0

Raw residuals

-0.2 |

-0.4 ¢
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The scatterplot between X and Y looks like ...

Linear Regression - Normally distributed Y values
Y = -.045564 + 1.007973* X
Correlation: r = .830887

20

The Regression analysis estimated parameters are:

i= Regrezzion 5

ETITR TN S R= 83088708 R2= 69037335 Adjusted RZ= 69029590
S 2112 F(1.3998)=8914._3 p<0.0000 5td_Error of estimate: 1.9394

St Emr. St Em
M=4000 BETA of BETA | B of B t[3998) p-level
Inten::Et ' ! -.045564 066242 - 68784 4915490
.830887 _ﬂﬂﬂy 1.007973 010676 94 41570 0.000000

b0 = estimated ffy bl = estimated [
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Examining each of the Assumptions 1-5 from page 2 above, we have ...

1. The mean of the errors (residuals (Yix-Yix')) for each observation of the Y; on Xj, over

plications, is zero.

Here, I examine the raw residuals for each value of X; -1 o 10

-E Summary Table of Meanz [regress_normal_residuals_sta]
MN=4000 [Mo mizzing data in dep. var. list]

RESIDUAL RESIDUAL RESIDUAL

Means H Yanance
059664 2.762665
- 032152 400 2.531683
-.054113 400 4 246228
- 085156 400 3.652802
112683 400 4 182679
014283 400 3.747958
034553 400 3.370544
-.048979 400 3.536864
-.030285 400 3.9656514
027501 400 3.657409
All Grps -_ 000000 4000 3.760234

Note that the means for each sampling distribution of Y at X - ¢, 10 are near 0.0

So, assumption #1 is confirmed.
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2. Errors associated with one observation of Y; on X; are independent of errors associated
ith any other observation Y; on X; (serial autocorrelation

Here we need to compute the autocorrelation function for the Residuals of Y, in sequential order
from observation 1 to 4000.

Autocorrelation Function (Normal Y)
RESIDUAL
(Standard errors are white-noise estimates)
1000

900 |

800 |

700 |

600 |

500 |

400 r

300 |

200 ¢

100 |

0.2 0.4 0.6 0.8 1.0

The Durbin-Watson statistic is

'E Durbin-W atson d [regressn.sta)
MULTIPLE ELUEIEIRS 0 BT i R TR ES

REGRESS.
Durbin- Sernal
‘wWatzon d Corr.
E stimate 1.959188 020174

Since the distribution of d lies between 0 and 4, the d value lies almost at mid-point in this
distribution (which is symmetric about 2.0). Draper and Smith (1998) pp. 181-192 provide
significance tests for d. Suffice it to say that we are unable to reject the null hypothesis of no
autocorrelation here. But, really, with the size of autocorrelation observed — we really don’t need
this test. Further, the graph above really says it all!
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. The variance of the errors of Y, at all values of X, is constant (homoscedasticity)

Here we will compute the variance of the variances of each sampling distribution of the residuals
of Y at each value of X;. These variances should all be the same value under this assumption.
Because of sampling error, they will vary — but, we want to be assured that they will only vary
marginally across values of Xj, hence we compute the variance parameter. This should be near
Zero.

The variance of variances is 0.081420 This is sufficiently low to give us some confidence that
we have met the requirements of this assumption in our data.

4. The values of the errors of Y are independent of the values of X.

Here we will correlate the residual error for every value of Y across all values of X (400 values
of Y for each X = 4000 cases), each pair or observations consists of a Y residual and a value of
X. This correlation should be zero

The correlation is computed to be —.0000000146596

This is strong evidence for the validity of this assumption.
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2. Errors associated with one observation of Y; on X are inde
with any other observation Y; on X; (serial autocorrelation)

Here we need to compute the autocorrelation function for the Residuals of Y, in sequential order
from observation 1 to 1600

Autocorrelation Function
RESIDUAL
(Standard errors are white-noise estimates)
1000

900 |

800 |

700 |

600 |

500 |

400 r

300 |

200 |

100 |

0.2 0.4 0.6 0.8 1.0

MULTIPLE ELWLEELEE =BG L Rl == TR

REGRESS.
Durbin- Sernal
Watzon d Cour.
E stimate 1.958404 020209

The serial correlation is near zero — which confirms assumption #2
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3. The variance of the errors of Y, at all values of X, is constant (homoscedasticity)

Here we will compute the variance of the variances of each sampling distribution of the residuals
of Y at each value of X;. These variances should all be the same value under this assumption.
Because of sampling error, they will vary — but, we want to be assured that they will only vary
marginally across values of Xj, hence we compute the variance parameter. This should be near
Zero.

The variance of variances is 0.03371 This is sufficiently low to give us some confidence that
we have met the requirements of this assumption in our data.

4. The values of the errors of Y are independent of the values of X.

Here we will correlate the residual error for every value of Y across all values of X (400 values
of Y for each X = 1600 cases), each pair or observations consists of a Y residual and a value of
X. This correlation should be zero

The correlation is computed to be —.0000000673575

This is strong evidence for the validity of this assumption.
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So, even though our observed sampling distribution of the Y values

was definitely non-normal, we were able to meet all 1-5 assumptions
the residuals.

Of course, this kind of subsampling introduces problems of another kind — but, it is important to
demonstrate that even where we have purposely distorted our sampling so as to fool ourselves
into thinking that we may not have been sampling from a normal population distribution, we
were still able to meet the 5 key assumptions for regression, which are based upon the
distribution of error, and not on the distribution of our dependent variable. This confirms
Cohen’s statement quoted on page 1, the shape of the distribution of the population of Y is not an
indicator of the validity of a regression — especially where it is inferred from the sample
distribution of Y values.

[Addendum — 17" August, 2005] from Dr S.A. Butler, Corus Research, Development and
Technology, Swinden Technology Centre, Rotherham, South Yorkshire

“Unfortunately, some people will insist on using Excel for statistical work even when much
better software is available to them, so I have recently had to look at the regression
facilities available in Excel. I discovered that, when regression is carried out via Tools /
Data Analysis / Regression, there is an option to produce a Normal Probability Plot, but this
is a plot of the Y-values, NOT the residuals”.

So, users of the Excel Statistical Toolbox - beware!

Of course, I haven't mentioned outlier and influence analysis which is also part and parcel of
regression analysis - but this is another issue in its own right.
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