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Within many domains of enquiry or activity it is important to be able to describe 
features of individuals associated with an activity or behaviour which contribute to 
some criterion of current or future success or failure. The span of these domains is 
wide, encompassing areas such as the assessment of risk of recidivist violence 
(Webster, Harris, Rice, Cormier, & Quinsey, 2004;  Monahan, Steadman, 
Appelbaum, Robbins, Mulvey, Silver, Roth, & Grisso, 2000), clinical 
psychopathology profiles (Groth-Marnat, 2003), career suitability (Peterson, 
Mumford, Borman, Jeanneret, Fleishman, Levin, Campion, Mayfield, Morgeson, 
Pearlman, Gowing, Lancaster, Silver, and Dye, 2001), job success via personality 
and intelligence scores (Schmidt and Hunter, 1998, 2004), consumer shopping 
preference (Dickson, 2001; Taylor and Cosenza, 2002), and internet consumer 
advertising (Raghu, Kannan, Rao, and Winston, 2001). Within all these domains, the 
aim is not just to describe the differentiating features of individuals or groups, but to 
incorporate the knowledge gained into a predictive framework or system which will 
permit future individuals to be classified, ranked, scored, or chosen/rejected 
according to their relative “standing” on those feature attributes.  
This chapter seeks to describe the substantive logic, methods, coefficients, and 
comparison procedures most commonly used within the domain of person-target 
profiling. These generally fall into methods of constructing “prototype” score vectors 
that are definitional for some preferred criterion, then using these score vectors as 
“targets” against which new individuals may be compared. Hence, much of this work 
is concerned with constructing score vectors and with choosing or designing the 
comparison coefficients which will be used to represent target profile disparity. 
However, with the advent of a new class of algorithmic data methods into statistical 
science, a significant part of this chapter is devoted to explaining what they are, and 
demonstrating their likely superior utility within a typical profiling application. The 
reason these methods are referred to as “algorithmic” is because they tend to work 
entirely within a framework of maximising the predictive or profile classification 
accuracy, not by assuming a standard probabilistic linear model for the data, but by 
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attempting to “learn” the relations between input variables and criterion without any 
assumptions necessarily being made as to linearity or distributions of observations 
on either predictor variables or outcome variables. Indeed, these two approaches at 
first glance look as though they share nothing in common. But, each in its own way is 
seeking to produce a template or some function of certain variables such that an 
individual possessing “target” values will be correctly classified as “member of, not 
member of, or close to” a criterion target (high performance employees say). The 
most common approach has been to develop a set of prototypical scores on some 
variables, and make the decision based upon some distance or covariance-sensitive 
coefficient value. The new approach outlined here is to treat the profiling problem as 
a “classifier” construction problem – and so seek to create a classifier “function” or 
“model” which optimally predicts membership of the target group. By using a “real-
world” set of data which is amenable to analysis by both approaches, it is hoped the 
reader can appreciate the principles of each whilst observing the benefits of perhaps 
treating “profiling” in future as more of a “classifier construction” issue than a 
conventional score vector distance estimation problem. 

1. The Profile, the Target, and the Comparison 

A profile is defined by Collins English Dictionary (1991,3rd edition) as: "a 
graph, table, or list of scores representing the extent to which a person, field, or object 
exhibits various tested characteristics or tendencies". However, a profile might also 
consist of any set of attributes whose magnitudes, features, ranges, categories, or 
even functions, are definitive of a particular group, class, cluster, or even a single 
individual case. Within organizational psychology for instance, a profile may be 
defined as an outline or shape formed by plotting magnitudes for an individual, 
group, or job, into a one, two, or three dimensional space. But, a profile of a 
successful business executive may contain scores on psychological variables and 
competency attributes as well as categorical and ordered category information, some 
function of which defines a successful executive rather than merely an “average” one.  

Once a profile is constructed, this may be proposed as a template or “target” 
against which future applicants, consumers, students, or other individuals may be 
compared in terms of similarity or dissonance. The simple logic behind such a 
procedure is that if one can obtain a discrete profile which discriminates between say 
high spending v low spending consumers, or credit-safe v credit-risk individuals, then 
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any further individuals may be compared to this profile such that a judgement or 
classification may be made as to their similarity to a particular group. In order to 
maximise advertising return or minimise financial exposure, knowing that an 
individual is closer to one or another group’s profile is likely to be of substantive 
financial value. Further, the comparison procedure can be automated, is objective, 
and possesses an “audit-trail”. That is, the user of such a profile comparison 
procedure will know how the final measurement, ranking, or classification decision 
was made, and which variables or functions contributed to it. Possibly the one 
exception to this is the use of a neural net for person classification or outcome 
prediction (Sommer, Olbrich, and Arendasy, 2004), where investigators sometimes 
barely consider the operational characteristics of the net (because of the intrinsic 
difficulty of doing so) and focus solely on the predictive outcome.  

There are four issues to be considered by an investigator prior to the 
construction of a profile: 

Dimensionality. The question here is how many dimensions will be used to 
characterise a profile? Most profiles are one-dimensional, with magnitudes or 
amounts of a set of attributes defining that dimension. But, it is possible to define a 
profile in two dimensions where two features of a set of attributes are definitive of the 
profile space for an individual. For example, we may assess the magnitude of an 
individual’s competencies in one dimension, whilst simultaneously assessing their 
preference for using these competencies during a working day. It is the position of the 
competencies in two-dimensional space which defines the profile, and against which 
profile comparisons will be made. Likewise, if we add a third dimension to that 
profile, that of “Job Effectiveness”, we now have a means of describing an individual 
in three dimensional space, where their competency magnitude, personal work-
balance preference, and overall job effectiveness may be maintained as a uniquely 
defining attribute set for comparison or selection purposes. Examples of each of these 
kinds of profiles as used in commercial applications are given below in Section 3. 

Metrics. Three sub-issues are of concern here. The first is concerned with 
whether the profile attributes are to be considered quantitative. That is, are the 
variable magnitudes to be treated as possessing equal-intervals such that arithmetic 
operations and transformations will be carried out on them? Alternatively, will the 
profile be said to constitute ordinal magnitudes only, thus constraining profile 
definition and comparisons to ordinal-ranking operations only? Or, perhaps the 
profile consists solely of categories, such as one that might be constructed using 
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configural frequency analysis (von Eye, 1990)? Will the profile consist of discrete 
classes of equal-interval, ordinal, and categorical variables – such that the overall 
comparison consists of “blocks” of comparison rules – each of which is weighted into 
an overall comparison index? The second issue is that of linearity. If the profile 
attributes are to be considered quantitative, then should the profile comparison be 
made under an assumption of linear or non-linear comparative similarity? For 
example, if wishing to compute the similarity between two profiles, should a simple 
linear difference measure be used, or perhaps a pearson or intraclass correlation? If 
not, perhaps a Euclidean distance or derived non-linear weighted distance function 
should be used? Finally, if a profile is constituted from several attributes, are these 
attributes to be considered independent from one another such that component 
distance calculations between specific attributes are equally weighted into the overall 
profile similarity or distance measure? In many cases, this is not even considered 
when using conventional linear profile comparison strategies, such as using 
Euclidean distances, intraclass or pearson correlations. Yet, if a target profile is built 
from two unbalanced (in quantity) sets of high within-set correlated attribute 
variables, then similarity to this profile may be gained from similarity to the majority 
set of highly correlated variables even though there is almost no similarity to the 
minor set. Although such an artificial example is unlikely to occur in practice, the 
studious profile constructor will ensure that the highest attribute variable 
intercorrelations in the profile are not markedly skewed toward a majority set within 
those variables. Alternatively, some adjustment might have to be made to the 
comparison function between the profiles in order to adjust for the profile attribute 
interrelations. 

Variables and Defined Outcomes or Classes.  This is a critical issue that 
concerns a most fundamental perspective on the nature of any profile to be 
constructed. Put simply, do you wish to construct a profile on the basis of the variable 
observations you have within a dataset, using a pre-defined criterion or criteria that 
are definitive of group or class membership, or do you wish to construct a profile on 
the basis of a set of hypothesised latent variables which are deemed causal for a 
hypothesised set of class latent classes or groups? The specific area of interest here is 
constructing profiles for groups of individuals, where either the groups are defined in 
advance and the profile is constructed directly on the basis of the observations on the 
profile attribute variables, or where the aim is to simultaneously construct both 
groups and profile attributes under a set of assumptions that assume both causal 
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variables and classes/groups are latent (to be inferred from the variable observations 
and their covariances). Latent Profile analysis is a recent methodology that addresses 
the latter option (Muthén, 2001; Muthén and Muthén, 2001); a factor mixture model 
built upon the foundation of Latent Class Analysis (Lazarsfeld and Henry, 1968) and 
common factor analysis (see also Magidson and Vermunt (2004) for a recent 
exposition of latent class models). In essence, it assumes that the common latent 
factor model can be applied to a set of variables (common to all latent classes) whose 
magnitudes are caused by one or more latent variables, with the estimated scores on 
the latent variables in turn defining the “categorical” latent classes. The reason for 
such a model being termed a “mixture” model is because the classes are hypothesised 
as being discrete latent entities whose composition is not immediately identifiable 
from the observations comprising the score vector for each member of the sample of 
individuals. The definition of Latent Class Analysis given by Waller (2004) as “a 
powerful method for finding homogenous groups in mixed samples” clearly 
distinguishes this kind of approach to profiling over direct a priori defined category 
class methods. The key feature of latent profiling methods is the apparent 
impossibility of defining a meaningful “outcome” class or classes in terms of readily 
available or meaningful criteria which are not themselves part of the observed 
variable-set that might form one or more profiles. Indeed, latent profile analysis 
seems to be a very specific method of exploratory inductive reasoning and class 
“discovery”, rather than a focussed attempt to generate profiles from variables which 
might be predictive of already specified, meaningful classes. The MAXCOV 
multivariate taxometric methodology of Meehl (1995) and Waller and Meehl (1998) 
is another approach to this “find the classes” problem, although it is only applicable 
to the situation where just two latent classes are hypothesised to exist and relies 
entirely upon conditioning operations on the observed variable data rather than 
derived latent causes of them. If we profile directly using the variables and data at 
hand, with a predefined criterion of outcome class, then there is no need whatsoever 
for Latent Profile Analysis. However, it is possible that an investigator might wish to 
invoke a latent variable model as underlying the observations on the manifest 
(observed) variables, or even a derived summary variable model as in principal 
components analysis. But, if there are no predefined outcome classes against which a 
defining profile might be constructed for each, then latent profile analysis, along with 
those other methods for determining clusters or groups within data (e.g. cluster 
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analysis, Q-factor analysis, multi-dimensional scaling, correspondence analysis, 
Kohonen feature maps and other unsupervised learning algorithms) will be required.  

Comparison Strategy. Finally, having decided upon the methodologies 
appropriate to constructing the target profile defining a group or single case, the 
investigator must decide upon how comparisons are to be made between new 
individual person attribute scores and the target profile. With one dimensional score 
vector profiles, this invariably is a choice between several measures of vector 
similarity or distance. In two or more dimensions, the choice of comparison 
methodologies tends to focus on distance-related procedures. If the profile is 
considered an ordinal representation of attribute magnitudes, then profile 
comparisons will be constrained invariably to ranking and ordering operations, with 
the end result being a ranked form of distance or similarity. However, as we replace 
simple score vector profiles with those based upon classifier functions, categorical 
variables, or Statistical Prediction Rules (Swets, Dawes, and Monahan, 2000), then 
the output from such comparisons shifts from a magnitude distance or ranked 
estimate to one of class membership. That is, the output of such a comparison is not 
an indicative estimate of distance or similarity from profile to target, but a discrete 
classifier decision into one or more groups. Latent Profile analysis and other 
quantitative classification methodologies such as logistic regression or discriminant 
function analysis will also yield a probability or likelihood estimate of group 
membership along with the estimated group classification. However, classifier 
functions invariably are used for decision-support and clinical diagnostics with 
classifications treated as discrete outcomes (Swets et al , 2000). 

In general, the majority of simple profiling solutions in organizational, 
psychological, and consumer-focussed commercial applications use a score vector to 
represent the profile of magnitudes on measured attributes for one or more 
individuals. It is therefore useful to define the essential features of this kind of 
profile, as many of the usual profile coefficients used to compare score vectors are 
insensitive to one or more of these transformations. Figure 1 below shows a simple 
score profile for twelve attributes: 
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Figure 1: A simple profile example; the scores on twelve attributes scales plotted as a profile. 

These scores could be prototypical mean values or median values of some group 
of individuals, the scores from a single individual (a "star performer" say), or even 
"ideal" scores generated subjectively by an expert. 
Cronbach and Gleser (1953) introduced three terms to describe a profile: 
�� Elevation: the mean of all scores defined in a single profile. In the above 

example this is equal to 14.083 
�� Scatter: the square root of the sum of squares of a single profile's deviation 

scores about the Elevation for that profile. Essentially the standard deviation of 
scores within a profile, multiplied by the square root of the number of attributes 
constituting the profile (scale scores in our example). The standard deviation for 
our data (using the unbiased formula for a standard deviation) is: 5.45372. 
Multiplying this by the square root of the number of scale scores is 18.89224, 
which is our Scatter Value. 

�� Shape: the residual information left in each score of a profile, after equating for 
the elevation and scatter indexes by subtracting out the elevation and dividing 
the resultant deviation score by the scatter value. 

More formally:  
Given a profile of scores xi, where i = 1 to n scales: 
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To show the effect of these transformations, let us look at two score profiles, one 
designated as a target profile the other as a comparison profile. Figure 2 displays the 
raw profiles.  

 
Figure 2: Two profiles of scale scores 

What we see is that the two profiles look the same shape (more or less) but are 
different in that the target scores are all lower than the other set of scale scores. If we 
subtract each profile’s elevation parameter from the respective profiles, the results 
can be seen in Figure 3. 
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Figure 3: Two profiles of scale scores with their respective elevation (means) subtracted 

Now the profiles seem to be much closer to each other - centered as they are 
around each of their respective means. What has happened is that we have removed 
the average "elevation" from each profile - so that each may be expressed in a 
common metric that always possesses a mid-point (average transformed data mean) 
of 0. Figure 4 shows the effect of equating for the variability associated with each 
profile. The shape, accentuation, or pattern, has been retained, but we have equated 
profiles for "level" and "variability". 
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Figure 4: Two profiles of scale scores, scatter normalised 

It is instructive to see what difference these transformation make to any simple 
form of profile similarity coefficient. If we look at the pearson and two forms of the 
intraclass correlation between the two profiles before and after transformation, we 
obtain the results as displayed in Table 2.  

 
Table 1: Three profile matching coefficients computed over the profiles in Figure 2 

 
As can be seen clearly from this table, the data transformations do make a 

substantive difference to the calculation of these three indices at least. Choice of 
single vector-score matching coefficient is critical within profiling applications. Not 
only are some like the Pearson completely blind to differences in elevation and 
scatter, but their expected distributions make some (like normalised euclidean 

 Pearson r ICC Model 2 ICC Model 3 
Raw profile comparison 0.99 0.35 0.78 
De-Elevation comparison 0.99 0.79 0.78 
De-Scatter comparison 0.99 0.99 0.99 
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distance) completely useless for profile comparisons. This issue will be taken up 
further in Section 3 below. 

2. Constructing Target Profiles 

This section details the most widely used methods for constructing target 
profiles or classifier functions/rules in order that comparisons or classifications may 
be conducted on new instances or cases. In the world of commerce, the prevalence of 
predefined class-identifying criteria removes the need for latent class analysis, 
although some investigators do invoke latent variables as a means of reducing 
dimensionality within large variable-count datasets. Discrete groups and classes are 
readily defined by many different real-world a priori criteria for group membership 
or class, such as job performance success or failure, profit/cost-neutral/loss, high-
performer/low performer, job-goal preference class, consumer product-preference 
groups, financial-risk groups etc. The inductive process of profile construction is thus 
confined solely to the patterning of the variables as predictors or descriptors of 
predefined-class membership.  

2.A. Score Vector Profiles 

A score vector profile is the most basic form of profile, where scores or 
magnitudes on one or more attributes in one or more dimensions is used as the target 
information against which new individuals will be compared. Figure 1 above shows 
respectively a single vector of attribute scores and their graphical display. Perhaps the 
most obvious exemplar of this kind of profile is that used within many psychometric 
personality tests where an individual’s scores on a test are displayed as a profile. This 
kind of display may also be used to represent a target profile on the personality 
attributes, such that an individual’s scores can be plotted against this profile. For 
example, figure 5 below shows the author’s personality test scores compared with a 
target profile constructed from a group of New Zealand working executive students 
studying for a professional qualification within the faculty of business at the 
University of Auckland. The test used is Psytech International’s (www.psytech.co.uk) 
15FQ+ multi-attribute personality test with the profiling achieved via the Psytech 
GeneSys™ profiling module software. The grey line is the target profile against 
which the individual’s scores are being compared.  
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TLabelY

BLabelY

Scale Low Score Desc Coeff. = 0.6 High Score Desc.

fA Cool Reserved Outgoing

ß Low Intellectance High Intellectance

fC Affected By Feelings Emotionally Stable

fE Accommodating Dominant

fF Sober Serious Enthusiastic

fG Expedient Conscientious

fH Retiring Socially Bold

fI Tough Minded Tender Minded

fL Trusting Suspicious

fM Practical Abstract

fN Forthright Discreet

fO Self-Assured Apprehensive

fQ1 Conventional Radical

fQ2 Group-Orientated Self-Sufficient

fQ3 Undisciplined Self-Disciplined

fQ4 Relaxed Tense-Driven

1 2 3 4 5 6 7 8 9 10

15FQ+ Profile

 
Figure 5: A Person-Target profile matching display, comparing the author’s test scores (black line) 

to those of the target profile (grey line) of a small group of New Zealand Executive Business 
students, using the Psytech International 15FQ+ personality test within the GeneSys™ Profiler 

module. 

An example of a two-dimensional profile is taken from the StaffCV Inc. 
(www.staffcv.com) job-preference mapping system. This unique profiling application 
uses two dimensions in which individuals rate their preference for work-behaviour 
attributes whilst simultaneously indicating their preferred frequency for engaging in 
these behaviours. The profiles for IT helpdesk/technical support staff is shown in 
Figure 6. The full measurement range is between 0 to 100 on each axis, but for clarity 
the “zoomed” profile display are shown. 
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Figure 6: Help Desk/Technical Support staff, 2-dimensional work behaviour attribute target profile. 

Finally, an example of a possible model for a three dimensional profile is 
provided in Figure 7. This profile is intrinsically non-linear. What it depicts is a three 
dimensional profile for a single attribute (say working alone), where the preference 
for that attribute (magnitude preference), the amount one wishes to engage in doing it 
(frequency), and the weight by which departures from an “optimal” comparative 
match are multiplied, are represented in three-dimensional space. 
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Figure 7: A hypothetical three-dimensional target profile for a job, where the preference for a 
particular work-behaviour and the frequency of engaging in it during a working day is also 

associated with a weight-function (attribute-weight) which is assigned so as to provide maximum 
predictive facility against job-performance.  

This kind of profile is quite different in many respects from a standard one and 
two-dimensional score profile, in that the z-axis dimension includes a weighting 
function which permits both penalty and reward of a two-dimensional comparative 
match. The weight function is required to be optimised or modelled using an outcome 
criterion as the calibration device. In this way, comparative assessment of profile 
similarity can be suitably “adjusted” by the choice of weight function. Note also that 
a multi-attribute profiler would include one of these three-dimensional sub-profiles 
for each attribute which is used as a constituent target. 

Construction Issues 

With score vector profiles there are two types of construction process, 
differentiated by whether the profile is constructed upon the basis of subjective 
reasoning or empirical data. The first process creates an “ideal profile”. That is, a 
target profile is created not by empirical analysis but rather based upon what an 
investigator or subject matter expert (SME) regards as a target set of scores. The 
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profile is considered “ideal” as it represents what the optimal target would look like. 
Of course, whether it is optimal remains a subjective matter until later examination of 
any evidence which might indicate that the profile has indeed optimised some other 
criterion for which the profile was actually used to enhance (e.g. increased 
productivity from the newly selected employees). The second process is based 
entirely upon empirical data drawn from either a single individual’s scores or from a 
group of such scores. Usually, the use of a single individual’s scores to form the basis 
of a target profile is known as “star performer” profiling, based upon the fact that in 
this particular target construction process the single case is an exceptional employee 
(e.g. the person with the highest sales figures, the highest consistent job performance 
rating, the most highly rated person from a subordinate 360 rating process etc.). This 
is an extremely risky form of profile construction. There are many reasons why an 
individual may be a “star performer”, and it’s quite possible that few of them are 
included in the set of attributes defining the profile. Further, how will you know 
whether the attribute magnitudes are in fact in any way unique? That is, the attribute 
magnitudes for the “star performer” may be found to be equivalent to those of all 
other employees or persons for whom the profile is being constructed. Unless some 
criterion separation work is undertaken by sampling the attributes amongst say a 
group of individuals known to differ markedly in the criterion of interest, and 
determining the key “star performer” profile attribute differences, then the use of 
such a profile resembles naïve casino gambling rather than a considered business 
strategy. 

If the profile is based upon a group of individuals, it is known as “homogenous 
group” profiling. This denotes the main assumption of this approach; a group of 
individuals are considered homogenous with respect to some criterion (e.g. best sales 
team, most productive machinists, highest performing digital image photo-processing 
group, a particular job-type such as accountants, general managers, HR 
administrators etc.). The target profile is constructed by using the average or median 
score on each attribute upon which each member of the group has been assessed. For 
example, the target profile in Figure 5 above is from a small group of New Zealand 
executive business students, using the average score across the 15FQ+ personality 
traits to represent the mean profile. In Figure 6, the two-dimensional profiles are 
constructed using the mean scores on both the preference and frequency dimensions 
across the 24 work-attributes. The key problem with this form of “homogenous 
group” is bound up in that word “homogenous”. The group of individuals may well 
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be homogenous with respect to a criterion (sales performance in dollars), but quite 
heterogeneous with respect to the attributes used in the profile. Further, by using a 
single “point-estimate” for each attribute such as the mean or median, no 
consideration is given at all to the variability of scores on any attribute. Probably the 
best way to cope with variability is to use it via a simple relative weight function, 
where more or less weight is given to a distance or similarity comparison based upon 
the variability of scores on a particular attribute within the target group. In this way, 
less weight is given to a profile attribute comparison value if the variability of the 
target group on that attribute is large. Likewise, where the variability is small, then 
more weight is assigned to that comparison value.  

In relation to the construction of three-dimensional profiles, the empirical 
process is somewhat more complex. The key problem concerns the design of the 
response function over the two-dimensional plane formed by the two rating scales. In 
Figure 7 above, the two-dimensional plane is formed by the magnitudes on the two 
scales “Preference for Work-Style” and “Frequency in a Working Day”. It is 
instructive to show the kind of construction processes and decisions that have to be 
made when constructing such a profile. In contrast to the kind of profile shown in 
Figure 7, let us assume we measure two preference attributes simultaneously: the 
“Preference to be the Leader” and the “Preference for being an Adviser” amongst 
members of our high performing work team. Note here that we are creating a 
preference profile where an individual makes a judgement on two attributes 
simultaneously in direct relation to one another, but without the requirement that 
showing a preference for one attribute must therefore imply a lack of preference for 
the other (the reader might have noticed how much this process mimics that of an 
ipsative rating questionnaire measure of personality, in some respects it does, but this 
kind of profiler assessment avoids the assumption that choices are oppositional or are 
indeed linearly related). So, we would first assess each individual on these attributes 
and “create a single summary point in the two-dimensional plane defined by the 
preference ratings of “Being a Leader” and “Being an Adviser”. 

The third attribute (the z-axis) is as yet undefined and unmeasured. At this stage, 
we could work entirely within a linear metric, comparing individuals against this 
“ideal point” and using a conventional distance indicator such as Euclidean or simple 
absolute distance. However, at the moment, no information is being conveyed by the 
3rd dimension of “Criterion Weight”. This weight can be used to boost or attenuate 
the distance/similarity between an individual’s scores on both attributes and the target 
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“profile point”. This allows the profile constructor to be sensitive to the critical 
importance perhaps of values on either attribute which may be considered so “off-
target” as to indicate that the corrected similarity or distance should be boosted so as 
to have a substantive effect on the overall profile similarity or distance calculation. If 
we have reason to believe that for example too much of both attributes actually has a 
poor relationship with our criterion, whilst too little is very poor, we might construct 
a non-linear weighting scheme (either from empirical data or from SME) such as that 
shown in Figure 8. 

 
Figure 8: A single average point estimate of scores for a high performance work-team on the 

preference attributes of “Being an Advisor” and “Being a Leader”, but now using a symmetric 
non-linear criterion weight scheme. 

This scheme uses the equation for a symmetric bivariate unit normal distribution 
(r=0.0) to construct a weight “cone” surrounding the optimal target profile point. The 
width of the base (and acceleration) of the weights from high positive to low negative 
is controlled by the standard deviation parameters. As with the homogenous group 
one and two-dimensional profiling discussion above, the variability (and subsequent 
importance) of a target profile point-estimate can be incorporated directly into the 
scheme here by adjusting the width of the base and the  acceleration of weight values, 
as well as the peak magnitude of the weight “cone”. So, as an individual two-
dimensional score departs from the optimal target score, its effect on an overall 
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profile coefficient is weighted non-linearly. It is this “shaping” of the distance or 
similarity function that is critical to the design of multi-attribute profiles, as the 
designer can “sharpen” up or make more “diffuse” each particular attribute match, 
which is especially important for aggregated profile comparison coefficients. 
However, as will be outlined in Section 3 below, the cost of “shaping” the distance 
function is that simulation work is required in order to generate expected coefficient 
distributions for both random and “typical” profile data. But, what this small example 
shows is that profile construction can and should be much more of a careful optimal 
design process than a simple “sum the scores, take the average, and start profiling” 
exercise.  

2.B. Statistical Prediction Rule Classifiers 

In Section A, we saw that a profile can consist of a set of target scores in vector 
format, against which new scores are compared. But, a profile might also consist of 
one or more functions of variables, where some weighted combination of the profile 
variables and their scores is predictive of being a member of a particular group (e.g. 
successful or unsuccessful call-centre operatives, or five groups differentiated by a 
job performance rating). Whereas score-vector profiling tends to be utilized in 
ranking schemes, where comparison profiles are ordered in relation to their similarity 
or distance to the target, function-based profiles tend to be used as “classifiers”. That 
is, their primary purpose is to classify or partition individuals into one or more 
ordered or unordered categories or classes based upon the function value.  

When working with such models, their success or failure is directly measured 
using their classification accuracy. In contrast score-vector target profiling solutions 
produce ordered comparison magnitudes, where a decision/cut-off value is chosen by 
the user (e.g. when using a similarity index which varies between 0 and 1, with 1 
indicating identity, a value above 0.7 might be chosen). It is rare in score-vector 
profiling to see a categorization of the profile matches into a set of categorized 
outcomes. In classifier-based profiling, this is the norm. Before discussing classifier 
specifics, it is as well to explain some of the terms and statistics most popularly 
associated with profile classifiers and any such “decision-support” process. Many 
applications use a dichotomous outcome variable, such as employ/not employ, 
success/failure, promote/not promote, sales > $50k/sales < $30k, absenteeism > 20 
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days/absenteeism < 10 days etc. These kinds of data can be expressed in a 
classification matrix or table such as that shown in Table 2. 

 
Table 2: A 2x2 classification table with cell notation. The probabilities might also be expressed 

as frequencies or even percentages in many applications. 

 
where: 
pTP = probability of a True Positive decision  
pFP = probability of a False Positive decision 
pFN = probability of a False Negative decision 
pTN = probability of a True Negative decision 
 

Such a table is computed using known a priori group membership, which is then 
contrasted with the predicted group membership via the classifier. The four cells of 
such a table define the four possible outcomes. So for example, predicting 
membership of a group of High Performance Work (HPW) Teams, a True Positive 
(cell A) outcome is where the prediction of being a member is in agreement with 
actual membership. A True Negative (Cell D) outcome is where the prediction of 
NOT being a member of the HPW teams is also correct. A False Positive (cell B) 
outcome is where the classifier predicted an individual as being a member of the 
HPW teams, but in reality they are not. Likewise, a False Negative (cell C) outcome 
is where the classifier predicts an individual as NOT being a member of the HPW 
teams, but in reality they are. Each of these four cell values is a proportion or 
probability which can easily be calculated by dividing the number of classification 
counts in a cell (A, B, C, or D) by the total number of classifications made 
(A+B+C+D). The goal of a classifier is to obtain 100% classification efficiency 
(overall predictive accuracy or Predictive Efficiency) which is calculated as: 

 TP TNPE p p� �  (2.1) 
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We might also wish to express the probability that a “group member” prediction 
correctly predicted the actual group membership relative to the number of positive 
(group member) predictions made. This is known as the Positive Power of Prediction 
and is calculated as: 

 TP

TP FP

pPPP
p p

�

�

 (2.2) 

Likewise we might wish to express the probability that a “NOT a group 
member” prediction correctly predicted the actual group non-membership relative to 
the number of negative (NOT a group member) predictions made. This is known as 
the Negative Power of Prediction and is calculated as: 

 TN

TN FN

pNPP
p p

�

�

 (2.3) 

As we increase the decisions to be made beyond two categories, these statistics 
no longer become relevant. However, classification accuracy and the 
classification/misclassification matrix is still an extremely important guide to where 
accurate and inaccurate predictions are being made.  

Finally, the most basic goal of any classifier profiling method is achieving 
classification accuracy whilst showing some degree of cross-validation (Witten and 
Frank, 2000; Webb, 2002). That is, not only should the initial production of a 
classifier function demonstrate good classification accuracy, it should also be shown 
to cross-validate or replicate this accuracy on further samples of data. By increasing 
the number of parameters in any classifier function, the likelihood is that 
classification accuracy will increase accordingly. In fact, when the number of 
parameters in a linear equation equals the number of cases, the prediction will be 
perfect as a parameter is available to account for each case’s unique variability. This 
is where cross-validation is essential.  

There are five methods of cross-validation used by classifier designers: 
�� Holdout Sample Validation. Here the analyst will partition a dataset into one or 

more “training” and “holdout” samples. A training sample is one which is used 
to construct the classifier function (calculating the weights in say a regression 
model). A holdout sample is a sample of data which is not used to construct the 
classifier. Instead, it is used once the classifier is constructed, in order to 
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determine whether the classifier functions as expected on a completely different 
set of data. So, if a classifier produces an overall 70% classification accuracy, 
then we would expect it to produce roughly the same level of accuracy on a new 
dataset if we had not capitalised on chance in the training sample (too many 
parameters causing over-fitting of the training sample data).  

�� V-fold Cross-Validation. This type of cross-validation is required when no 
holdout sample is available and the total sample is too small to have a holdout 
sample partitioned from it. V-fold cross-validation involves resampling data 
from the total sample, taking V subsamples as equal in size as possible. The 
classifier function is then computed V times, each time leaving out one of the 
sub-samples from the computations, and using that subsample as a holdout 
sample for cross-validation, so that each subsample is used V - 1 times in the 
training sample and just once as the holdout sample. The classifier parameters 
are then averaged over the V-folds to produce the final classifier function. So, if 
we used 3-fold cross-validation, we would use two-thirds of the data each time 
to construct the classifier, and one-third of the data as a holdout validation 
sample. 

�� Global/Stratified Cross-Validation. This method maximizes the size of the 
training sample relative to the holdout sample, but increases the number of folds, 
V, to compensate for the smaller holdout samples. The technique partitions the 
total dataset into V equal-sized folds, where the composition of the data in each 
fold maintains the relative class proportions as found in the total sample. Then, 
the training dataset is constructed from V – 1 folds chosen at random from the 
collection of V folds, with the Vth fold retained as the holdout sample upon which 
the classifier will be tested. This procedure is completed V times, with the final 
solution being composed from the average of all the classifier functions. So, if 
we used 10-fold cross-validation, we would use nine-tenths of the data each time 
to construct the classifier, and one-tenth of the data as a holdout validation 
sample. Witten and Frank (2000) recommend this method be used with V=10 
whenever insufficient data exist for a large holdout and training sample. This is 
also considered the standard method for cross-validation using a single sample 
of data. 

�� Jackknife/Leave-One-Out Cross-Validation. This is a technique, first 
introduced by Quenouille (1949) and later expanded upon by Tukey (1958) and 
Mosteller (1971). Essentially, the jackknife procedure involves removing a 
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single observation from a set of data, then computing the classifier on the 
remaining n-1 cases. For n cases in a dataset, n jackknife classifier solutions are 
computed, and the parameter values averaged over all jackknife solutions to 
provide “robust” parameter estimates. Essentially, this is V-fold cross-validation 
where V= n. Each “holdout” case is fitted by the classifier and the aggregated fit 
statistics form the estimated error-rate of the averaged classifier. When using 
Discriminant Function Analysis to form a classifier, the Lachenbruch (1975) is 
sometimes used to estimate the robust classification accuracy – but, since this is 
equivalent to computing a standard jackknife procedure, the use of Mosteller’s 
(1971) procedure is now more straightforward, and it allows for an optimisation 
procedure to be used on the final averaged classification function profile 
attribute variable weights. Using the three key indexes for a dichotomous 
classifier (false positive rate, false negative rate, and overall classification 
accuracy/predictive efficiency), it is possible to optimise the jackknifed 
classifier which provides its output as a real valued function. By selecting 
“threshold” classifier function values, one at a time, and computing the 
classification table and indices using that threshold as a cutoff for group 
selection, it is possible to calculate an optimisation function that minimizes the 
false positive and false negative error rates whilst maximizing the predictive 
efficiency. Figure 9 displays such a function for a set of data from a company 
which required a classifier developed to select two groups of individuals, one of 
which whose members showed little interest in “Leading People”, the other 
group’s members showed great interest. The classifier was a multi-attribute 
discriminant function model which was constructed using jackknifed estimates. 
In this particular case, the optimization procedure could not improve upon the 
Lachenbruch/jackknife procedure of 66% classification accuracy. However, for 
some other attributes, this optimization procedure produced an 8% increase in 
classification accuracy (from 70 to 78% for example). 
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Figure 9: An optimisation function for a dichotomous outcome classifier, minimizing false positive 

and false negative rates whilst maximizing predictive efficiency. 

�� Bootstrap/Simulations. The final method of cross-validation involves 
resampling the total dataset with replacement. That is, subsamples of data are 
sampled from the total dataset, but as a sample observation is taken from the 
dataset, it is not removed from the total dataset but is able to be selected “at 
random” again via the sampling process. This differs from the V fold methods in 
that these sample without replacement. Efron (1979) first introduced this 
technique for parameter estimation in statistics. In classifier profiling, the 
bootstrap is used to construct several instances of a training sample, with the 
holdout sample each time composed of those values not bootstrapped into the 
training sample. The averaged classifier parameters are used to construct the 
final classifier function with the error rates computed from the average of the 
holdout sample classifications.  

Regression and Discriminant Models 

Invariably, ordered rating or category functions are built upon a simple linear 
regression such as that shown in equation 2.1 
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where  
g = groups 1-5, ordered in terms of performance ratings 
bo = an equation constant 
b1..n = profile attribute weights 
p1..n = profile attribute scores 
 

The classification into groups [1..5] is achieved by rounding the real-valued 
equation result ‘g’ for a set of profile scores. The equation tries to assign individuals 
with scores on a set of profile attributes into one of the five groups based upon the 
weighted linear combination of those scores. The optimal weights are found by 
sampling from the five groups and computing the regression equation that best 
predicts group membership. This equation is then used for classify new individuals 
into the groups based upon the rounded values of g. However, whilst this works well 
where there are just two possible values for g, and is in fact the basis for Fisher’s 
linear discriminant function analysis, multiple regression analysis assumes a 
continuous valued dependent variable and tends to produce poor classifications of 
discrete values when more than two outcomes are expected.  In this case, we would 
use multiple linear discriminant function analysis. This retains the notion of a linear 
set of predictors, but works on the basis of producing more than one equation to 
predict group membership. In fact, an optimal prediction equation is produced for 
each group or category of the dependent variable. New cases are assigned to a 
category based upon the highest classification score computed from each equation 
(Nunnally and Bernstein, 1994, Tabachnick and Fidell (2001).  

If we do not wish to assume that the predictor attributes are normally distributed 
(one of the assumptions in the multiple regression/discriminant function analysis 
model), we might use a model based upon the logistic distribution which makes no 
assumption about the distribution of predictor variables. For example, ordered or 
multinomial response logistic regression is a nonlinear prediction model which will 
yield a probability of outcome for each of a set of outcome categories. For 
dichotomous outcome dependent variables such as success/failure, high performer v 
low performer etc., only one classifier equation is computed. In our example of the 
linear model above, there are (5-1) = 4 equations computed. Each equation 
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determines the probability of an individual being in a performance category above the 
immediate lowest one. For example, the equation probabilities can be read as: 
�� Eq.1: the probability that individual x is above performance category 1 
�� Eq.2: the probability that individual x is above performance category 2 
�� Eq.3: the probability that individual x is above performance category 3 
�� Eq.4: the probability that individual x is above performance category 4 
 
Which, when the attribute values are entered into each equation, might look like: 
�� Eq.1: the probability that individual x is above performance category 1 (0.01) 
�� Eq.2: the probability that individual x is above performance category 2 (0.23) 
�� Eq.3: the probability that individual x is above performance category 3 (0.52) 
�� Eq.4: the probability that individual x is above performance category 4 (0.03) 
 
What we conclude here is that individual x is most likely to be a member of 
performance category 4. The basic equation for this model is: 
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where  
(x > j) = the probability that individual x is located in a group > j (where j= 1 to 5) 
boj = an equation constant for group j 
b1..n = profile attribute weights for group j 
p1..n = profile attribute scores for individual x 
 
which, when expressed in a linear form by taking logs is: 

 e 0 1 1 2 2 3 3
( )Log ...

1 ( ) j j j j nj n
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 (2.6) 

where e
( )Log

1 ( )
P x j

P x j
� ��
� �

� �� �
 is the logit or log odds of an individual being in group (j+1); 

which is given by the ratio of the probability of being in a lower group divided by the 
probability of being in the group above, where j = group [1 …4]. As the reader will 
see, this kind of multinomial regression is in fact the logistic analogue of multiple 
discriminant function analysis as described above. 
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These three techniques, linear regression, multiple linear discriminant analysis, 
and logistic regression form the backbone of the essentially linear function classifiers. 
They have the advantage of statistical elegance, simplicity, and the capacity to refer 
to hypothetical sampling distributions for estimates of statistical significance for 
parameter values. However, this very simplicity sometimes mitigates against their use 
for real-world problems where a high level of classification accuracy is the aim. 
Moreover, few samples used in profiling research and applications can be said to be 
random samples of any kind of “population” whose scores may be distributed 
according to some specified hypothetical distribution. The utility of any significance 
test is thus highly questionable in these scenarios.  

2.C. Algorithmic Classifiers 

Algorithmic classifiers approach the classification problem from a completely 
different perspective than the statistical classifiers outlined above. Rather than fit data 
using predefined (generally linear) models to a data, an algorithmic model solves the 
problem using a set of simple rules or heuristics which when followed, yield a 
solution or classifier that maximizes cross-validated predictive/classification 
accuracy. No assumptions need be made about the distribution of the data, and there 
is no requirement that relationships amongst variables need be linear or even 
continuous over the range of any variable. In short, there is no requirement or indeed 
necessity for an a priori stochastic data model to be utilized. This is the reverse of the 
models in section 2.B above, and indeed for all conventional multivariate statistical 
methods. Possibly the most striking examples of computational algorithms for pattern 
and complex systems feature generation are found within Cellular Automata 
(Wolfram, 2002) and Genetic Algorithms (Mitchell, 1998). However, within the 
classifier construction domain, two methodologies are dominant. These are decision 
trees and neural nets.  

2.C.1. Decision Trees.   

The concept and major algorithms for a constructing a decision tree were 
introduced by Breiman, Friedman, Olshen, and Stone (1984) with the Classification 
and Regression Tree algorithm (CART), and Quinlan (1986, 1993) with the ID3 and 
C.4.5 classifier algorithms. A decision tree is a structure built from a series of 
decisions that aim to maximize classification accuracy of two or more outcome 
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classes, levels, or measures. The analogy with the form of a tree is what gives these 
structures their name. For example, let us take a simple problem, attempting to 
classify high and low rated job performers using two attributes: Self-Report Job 
Stress and Self-Report Satisfaction with Managerial Style. The data table for this 
problem is shown in Table 3 below. 

 
Table 3: Data table for Decision Tree example, where we are trying to predict job group 

membership of high and low job performance from the ratings on two attributes. 

Job Performance 
Rating 

Self-Report    
Job-Stress 

Satisfaction with 
Managerial Style 

Low 8 5 
Low 7 5 
Low 6 3 
Low 3 4 
Low 8 7 
Low 7 5 
Low 5 5 
Low 7 3 
Low 6 6 
Low 7 5 
High 2 6 
High 5 7 
High 4 8 
High 5 6 
High 3 6 
High 4 7 
High 3 7 
High 5 9 
High 3 7 
High 2 8 

 
We have 10 individuals in each of our criterion groups of high and low rated 
performers. Analyzing the data using decision tree analysis results in the structure 
displayed in Figure 10. 
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Figure 10: a Decision tree for the data in Table 5, classifying individuals who show high or low job 

performance ratings on the basis of their self-report job stress and satisfaction with their boss’ 
managerial style. 

The first box in this figure, labelled “Root Node” shows the initial starting 
position for our decision tree – with the High and Low Performance group 
frequencies shown as histograms within the box, with the high group shown as a solid 
black line, and the low group as a dotted line. The algorithm then searches all the 
independent variables for the one that provides an optimum separation of the 
members (cases) of the two groups into their respective classes (high and low 
performance). In our case, this is found to be “Self Report Job Stress”. Because we 
are dealing with ordinal variables here (ratings and scores), the split can be made at 
that value which maximally separates the two groups. This is a value of 5.5. Above 
this value, cases are classified as Low Performance members, below this value, they 
are classed as High Performance cases. We see from figure 13 that 8 cases are classed 
as low performers, and 12 as high performers. The decision produces what are called 
nodes – each node “branching” from the root node. The 8-case Low Performance 
node is also referred to as a terminal node, which in this particular example means no 
more classification is possible from this node as all cases in this “branch” of the tree 
have now been classified into one class within the node. Indeed we can see that 8 
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Low Performance cases have been correctly classified by the decision statement. 
However, the other node includes two Low Performance cases which have been 
incorrectly classified by this single decision as High Performance cases, along with 
the 10 “actual” High Performance cases. So, the algorithm searches for the best 
variable which will accurately discriminate or “split” the cases at this node, it finds 
that scoring <= 5.5 on the variable “Satisfaction with Managerial Style” discriminates 
perfectly between Low and High Performers at this node. So, two more nodes are 
created which contain the two Low Performance cases and the 10 High Performance 
cases. These nodes, are also referred to as terminal nodes because no more 
classification is possible here. However, a node may be “terminal” even when cases 
from two classes are required to be split within the node, but where a constraint on 
how “deep” the tree may extend has forced termination of the tree at that node.   

From this simple tree we can see that classification accuracy is 100%. That is, 
from the two decisions made, all cases can be accurately classified into High and 
Low Performers. This tree in fact forms our profile for predicting in future, potential 
high and low performers from the basis of Job Stress scores and boss’ Managerial 
Style ratings. The final step in decision tree analysis is thus to create the decision 
statement-block which forms the basis for future case allocation. This requires 
“parsing” the tree, which in reality means simply creating the decision block required 
to be slotted in to a new-case scoring program or computer-based allocation system. 
For example, for the current tree, the decision block constituting the classifier profile 
is simply: 
 
If Self-Report Job-Stress > 5.5 then {Decision #1} 

Membership Class  = Low Performance 
Else If Satisfaction with Managerial Style <= 5.5 then {Decision #2} 

Membership Class = Low Performance 
Else  

Membership Class = High Performance 
 

In terms of classification accuracy, this tree is 100% accurate. If we fit a 
multiple linear regression model of the form shown in equation 2.4 above to the data, 
with the two independent variables of Self-Report Job Stress and Self-Report 
Satisfaction with Managerial Style used as predictors of Job Performance group 
(high-low), we obtain an R2 of 0.77 (77% explained variation), but, if we convert the 
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predicted values into rounded integer format, we also obtain 100% classification 
accuracy. This simple example acts as a warning to those who use linear model R2 
values as measures of function accuracy when the aim is to classify rather than 
predict a continuous-valued dependent variable. Fitting a logistic model of the form 
shown in equation 2.5 also results in 100% classification accuracy. 

Whilst the above example helps explains the basic terminology and logic of a 
decision-tree, it is perhaps helpful to see what a more realistic profile 
construction/design process actually involves. Our second example is drawn from a 
dataset of individuals from differing occupational groups who completed an 
assessment of their work-behaviour preferences (24 preference attributes with each 
measured over a 0 to 100 range). Figure 11 provides the median score vector group 
profiles for two of these employee groups, those individuals working in Human 
Resources (N=93), and those in Finance/accounting positions (103). 

 
Figure 11: Score Vector Profiles using the median scores for two employee groups (HR = Human 

Resources) assessed on their preferences for work-based activities 

However, unlike the methods expanded upon in Section 3 below, where we are 
interested in how near/distant a new individual’s score profile may be to either profile 
so that we might for example advise them as to possible career options, a classifier 
approach is attempting to assign them to one class or the other. If we fit a multiple 

Person-Target Profiling 

 

95 

linear regression equation (equation 2.4) to these data, with 24 predictor variables, we 
obtain an R2 of 0.15. As before, transforming the continuous predicted values into 
rounded class-value integers (1=HR, 2=Finance) for classification purposes yields a 
classification accuracy of 61%, but in looking carefully at the errors we see that the 
equation is biased in over-predicting finance cases and under-predicting human 
resource cases such that the false negative rate (where we predict a case as being 
from the finance class yet it is in fact from human resources) is 80%. In short, its 
apparent overall profile classification accuracy disguises the fact that it is very poor 
for the human resources class. If we turn to a logistic model as defined in equation 
2.5 above, we find a classification accuracy of 60% (adjusting the class boundaries to 
reflect the prior class frequencies of 93 and 103 respectively). The error rates are 
however more balanced with false-positive and false negative rates each of 41% and 
40% respectively. Moving now to the construction of a decision tree classifier, we 
have to make certain decisions regarding how to construct the tree in terms of how to 
select the optimal variable upon which to make a split and form a node, and when to 
stop splitting or growing the tree. For example, if we choose to use a splitting method 
based upon finding optimal values on a single variable that best discriminates 
between the classes with a “stopping rule” which states that if fewer than 2% of the 
observations are in one or the other class at a node, then no further splits will take 
place from that node, we obtain the following tree as shown in Figure 12. 
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Figure 12:a decision tree for classifying two groups of employees (HR = Human Resources and 

FIN – Finance) on the basis of their work-behaviour preferences as assessed over 24 attributes. A 
2% “fraction of objects” stopping rule is employed, with a univariate optimal split algorithm 

criterion. 

This tree possesses 52 splits (decisions) and 53 nodes, its classification accuracy 
is 95%. At first glance this is a remarkable increase in predictive accuracy from the 
other methods we have used. But, as stated earlier, the capacity of algorithmic 
methods to over-fit data must not be underestimated. Unless care is taken to cross-
validate these results using at least one of the five methods outlined in section 2.B, 
then such results might mistakenly be viewed as “excellent”. This result used V-fold 
cross validation with V=3 folds, which is a clear demonstration that this method is not 
very sensitive to over-fitting bias. So, we use a more powerful method – the 
global/stratified cross-validation procedure with V=10 folds. This shows us that this 
tree is actually more likely to possess just 48% classification accuracy on new cases, 
with balanced false positive and false negative rates of 52%. This solution highlights 
the need to produce a tree with fewer decisions, whilst maximizing cross-validated 
classification accuracy. In short we need to “prune” the tree. So, we fix our fraction 
of objects say at 25%, which states that if fewer than 25% of the observations are in 
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one or the other class at a node, then no further splits will take place from that node. 
We obtain the tree shown in Figure 13. 

 
Figure 13: a decision tree for classifying two groups of employees (HR = Human Resources and 

FIN – Finance) on the basis of their work-behaviour preferences as assessed over 24 attributes. A 
25% “fraction of objects” stopping rule is employed, with a univariate optimal split algorithm 

criterion. 

This tree has far fewer splits/decisions than that shown in figure 15. Its V-fold 
(=3) cross validation classification accuracy is however, reduced to 62% (from 95%), 
whilst the Global V-fold (=10) classification accuracy is 55% (up from 48%). 
However, in algorithmic modelling, there are always varying ways of approaching 
data that may capitalize on features of the data or other algorithms so as to produce 
better cross-validated classification accuracy. So, we might try another splitting rule 
given we have ordered variable predictors (with a maximum measurement range 
between 0 and 100). One powerful method for doing this is to produce splits in the 
tree, not on the basis of single variable ranges, but on functions of several variables. 
A convenient methodology for this is linear discriminant function analysis. Each split 
is based upon a discriminant function cut-off, where the discriminant scale is 
constructed from all predictor variables, and where the chosen cut-off maximizes the 
discrimination between the two classes at a node. Each node thus requires its own 
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discriminant function equation. I now choose this splitting criterion along with a 
fraction of objects stopping rule of 50%. The resultant tree is shown in Figure 14. 

 
Figure 14: a decision tree for classifying two groups of employees (HR = Human Resources and 

FIN – Finance) on the basis of their work-behaviour preferences as assessed over 24 attributes. A 
25% “fraction of objects” stopping rule is employed, with a linear discriminant  function optimal 

split algorithm criterion. 

This tree has fewer splits/decisions than that shown in figure 16 (just two now). 
Its V-fold (=3) cross validation classification accuracy is 70% whilst the Global V-fold 
(=10) classification accuracy is 56%. So, we have obtained marginally better cross-
validated prediction with markedly fewer decisions, although those decisions are now 
made by scoring each new case on two 24-variable discriminant functions in order to 
produce the classification score for each decision. Whilst we could (and should) 
continue trying various methods for tree splitting, pruning, and cross-validation, I 
hope it has become more apparent to the reader that algorithmic modelling is quite 
unlike statistical modelling in that a greater capacity exists for extracting the 
maximum possible information from data whilst cross-validating the results achieved. 
Further, in the cases above, the simple V-fold cross-validated solutions for a decision 
tree outperformed the non-cross-validated conventional regression methods. The 
significance of this fact should not be lost on the reader.  
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2.C.2. Neural Nets or Artificial Neural Networks (ANN) 

A neural net or network draws its name from the basis of this kind of approach 
to constructing predictive solutions of outcomes, based upon a biophysical model of a 
neuron (Koch, 1999) and how the brain’s use of neurons in “networks” allows it to 
process information and ultimately solve problems. The initial proposition that an 
artificial network might be constructed which could simulate some aspects of neural 
interconnectivity and form the foundation of a system which might make logic-based 
decisions was a conjunction of two lines of investigation. The first was in the area of 
mathematical logic and axiomatic formalisation of the rules for arithmetic and 
calculation, the second in the field of neurophysiology (Arbib, 1995). It was 
McCulloch and Pitts (1943) who published what might be considered the 
foundational paper in this area, making explicit reference to the neuron as a 
threshold-based logical unit, and showing that a system of interconnected artificial 
neurons could form the basis of a Turing machine. It was also around this time that 
the field of cybernetics (feedback-contingent control systems) was starting to attract 
the interest of engineers and scientists (Rosenblueth, Wiener, and Bigelow (1943)), 
with the notion that the brain was itself a biological control system rather than the 
older view of it being a “reflexive” system. That is, the brain was fed inputs, it would 
process these, produce responses, which in turn produced new inputs which in turn 
would provide feedback for the original responses such that the brain might adjust its 
new output on the basis of its own previous output and subsequent input. The neural 
network was a mechanism by which such a control system might be implemented.  

Basically, a neuron has two states – it is either quiescent or it produces a signal;  
the basis of a Boolean logic off/on decision. From biological studies of neural tissues, 
individual neurons, and the properties of such neurons and their interconnectedness, 
five assumptions/propositions are made about neural computations which form the 
basis of many of the algorithms embodied in artificial neural networks (McLeod, 
Plunkett, and Rolls (1998): 
1. Neurons integrate information. That is, a neuron integrates information from a 

set of multiple inputs (other neurons) and passes a signal to other neurons.  
2. Neurons pass information about the level of their input. Not only does a neuron 

integrate information, it also encodes information about the level of magnitudes 
of its input via its firing (“on/off”) rate. In an ANN, this adaptive firing rate is 
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encoded as a single “activity” magnitude which varies in response to the 
perceived input level. 

3. Brain networks are “layered”. That is, banks or “layers” of neurons may be 
interconnected with one another. Entire arrays of interconnected neurons may 
themselves be connected together in order to form a composite processing 
network. Layers not immediately connected to the initial inputs or the final 
outputs are called “hidden layers”. Figure 15 shows a schematic of a neural 
network with one hidden layer. 

 
Figure 15: a schematic of a multilayer neural network with one hidden layer. 

4. Neurons are influenced by the strength of connections between them. 
Essentially, this proposition states that the influence of one neuron on another is 
affected by the strength of connection between them. Propensity to fire in a 
biological system can be controlled by the abundance/depletion of 
neurotransmitters within the synapse (the area of connection of two neurons) 
and properties of the membrane of either neuron. Within an ANN, this influence 
is modelled as a weight function applied to the connection between two neurons. 

5. Learning is achieved by changing the strength of connections between neurons. 
This is the crux of an ANN. In order to produce “learning” as for example in 
order to develop a classifier, the network has to adjust the weights (strength of 
connections) between neurons. It does this by starting with a set of random 
weights, producing some output from the inputs, then if the output is not correct, 
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re-adjusts the weights according to one or more algorithmic principles, then re-
produces the new outputs from the inputs, and so on until some criterion 
accuracy is reached. This is the essence of the iterative “backpropagation” 
algorithm used in so many network training applications. The algorithms, 
network types, and fundamental training and learning issues within ANN 
generation are simply too numerous and complex to be summarised in what is 
essentially a chapter on person-target profiling methods. The interested reader 
should consult references such as Hastie, Tibshirani, and Friedman (2001), 
Arbib (1995), and McLeod et al (1998). However, neural nets are a key 
methodology for producing classifiers for profiling groups of individuals, as 
evidenced by the recent study from Sommer et al (2004) for airline pilot 
selection. In order to allow the reader to judge the classifier effectiveness of a 
neural network, I have fit (using STATISTICA Neural Networks software) what 
is known as a multilayer feed-forward perceptron network to the complex 24 
work-behaviour preference problem above, attempting to classify members of 
two employee groups; human resources and accounting/finance, on the basis of 
the network formed using 24 predictor inputs. This model was initially fit onto a 
training sample (N=140), then a verification sample (N=56). Classification 
accuracy (computed over the verification sample) of this model was 71%, using 
a hidden layer with 8 “hidden” processing units. However, in order to fully test 
such a model using so few cases, one might use several bootstrap samples in 
order to construct multiple training and verification samples. However, the 
capacity to maximize cross-validated classification accuracy via algorithmic 
methods is the very reason why these models are becoming so prevalent in the 
prediction/classifier, and now profiling applications. 

3. Score Vector Comparison Coefficients 

Returning to our popular score vector profile as outlined in section 2.A above, it 
is useful to detail the main coefficients used for expressing a comparison in terms of 
similarity or distance from the person to a one-dimensional target score profile 
vector. Broadly speaking, there are two types of coefficient, those based upon 
covariance between profile vectors, and those on Euclidean distance.  
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3.A.1. Covariance Based Coefficients 

Pearson Correlation 
Given a vector of person scores pi, and a vector of target scores ti, where i ranges 
from 1 to N profile attributes, the pearson correlation r =  

 where =the number of paired observations
cov

    pt

p t

r N
s s

�

�

 (3.1) 

where covpt is the covariance between variables p and t. 
The coefficient varies between ++11..00 and --11..00, with +1.0 indicating maximum 

similarity, -1.0 = maximum inverse similarity, and 0.0 indicating no relationship 
whatsoever. The coefficient is sensitive only to shape, as both elevation and scatter 
are equated by the deviation and normalisation by standard deviation. The definitions 
of these terms have been given above in section 1, and in equations 1.1, 1.2, and 1.3. 
Intraclass Correlation (ICC) 
This coefficient is computed specifically for the situation where all observations are 
considered to be from the same class. This distinguishes it from the pearson 
correlation which assumes observations are acquired from different variables 
(Norman and Streiner, (2000)). A class for example might be a pair of twins, an 
individual measured across two occasions, or as in our case, a profile of scores 
acquired from two individuals, or a an individual being compared to a target profile. 
The class in each cases being the score profile. Two models for the coefficient are 
utilized in person-target profiling, corresponding to models 2 and 3 from Shrout and 
Fleiss (1979). 
 
Model 2:  We assume the profiles are randomly selected (sampled) from some 
population of profiles (a two-way random effects model). That is, the target profile is 
considered an instance from some population of all possible profiles, as is the profile 
from an individual (which is to be compared to the target). This means that we 
consider that we have sampled an individual's profile from some population of 
possible profiles. Likewise the target profile… 
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Model 3: We assume the profiles are the "population" profiles for a target and 
individual to be compared to that target profile (a two-way, fixed-effects model). It is 
assumed that these are the only two profiles - they are not "samples" from some 
theoretical population of possible target and individual profiles (in that the target is 
unique, and the individual profile is considered unique). 
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The intraclass coefficient varies between ++11..00 and --11..00, with +1.0 indicating 
maximum similarity, -1.0 = maximum inverse similarity, and 0.0 indicating no 
relationship whatsoever. The coefficient is differentially sensitive to elevation, 
scatter, and shape, depending upon the model chosen. 
Congruence and Alienation Coefficients 
The congruence coefficient is normally encountered in the domain of factor similarity 
(comparing factors from a factor analysis across samples). It is, in effect, a pearson 
correlation computed using unstandardized variables. Overall and Klett (1972, pp. 
392-393) also refer to this coefficient as the raw vector product coefficient 
(contrasted with the normalized vector product coefficient - i.e. the Pearson 
correlation). Guttman (1981) derived exactly the same coefficient for computing the 
similarity between derived and observed distances within multidimensional scaling 
(MDS); he called it the monotonicity coefficient (mu or �). Coxon (1982, p. 89-90) 
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also shows that � is directly related to measures of stress (in multidimensional 
scaling), as well as Gutmman's coefficient of Alienation (K). This alienation 
coefficient is a measure of the "unexplained" variation between the comparison and 
target profiles. So for example, if a congruence coefficient of 0.99 is computed, 
Guttman's K = 0.14. A brief discussion of these issues can be found in Borg and 
Groenen (1997, pp 203-204). In relation to this issue, they note that ��takes on values 
close to 1.0 even if the MDS solution is "far from perfect". It was for this reason that 
Guttman converted � to K (the coefficient of Alienation), in order to expand the 
indicative range. If we subtract K from 1.0, we can obtain a measure of "similarity" 
(lack of alienation) that is based upon the expanded range of K.Of interest is that 
Gorsuch (1983, p. 285), in relation to the use of the congruence coefficient for 
comparing factors, states "Occasionally, coefficients of congruence can give 
ridiculous results. Pinneau and Newhouse (1964) have pointed out that the index is 
highly influenced by the level and sign of loadings. Factors whose loadings are the 
same size will, of necessity, have a high coefficient of congruence even if the patterns 
are unrelated". 
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 � � � �2 2( ) 1     1 cAlienation K r�� � � �  (3.8) 

The congruence coefficient varies between +1.0 and -1.0, with +1.0 indicating 
maximum similarity, -1.0 = maximum inverse similarity, and 0.0 indicating no 
relationship whatsoever. The congruence coefficient tends to be sensitive only to 
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shape, although the 1-Alienation coefficient does possess some sensitive to elevation 
and scatter differences.  

3.A.2. Distance Based Coefficients 

The second most popular kind of profile matching coefficient is that based upon 
the concept of “Euclidean distance” or some kind of “difference score” measure of 
person-target distance/similarity.  
 
Euclidean Distance 
The Euclidean metric is that which corresponds to everyday experience and 
perceptions. That is, the kind of one, two, and three-dimensional linear metric world 
where the distance between any two points in space corresponds to the length of a 
straight line drawn between them. The formula for this distance (given pairs of points 
in 1 dimensional linear space, as in a typical scale score profile comparison scenario 
is: 

 � �
2

1

N

ij i i
i

d p t
�

� ��  (3.9) 

where 

 the profile score to be compared on scale  of  scales.

 the target profile score on scale  of  scales. 
i
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Euclidean distance has no obvious bound value for the maximum distance, 

merely one for absolute identity. Its range of values vary from 0 (absolute identity) to 
some maximum possible discrepancy value which remains unknown until specifically 
computed. So. profiles can be compared amongst one another in terms of their 
Euclidean distance, given they are expressed in the same metric range as one another 
- but the distances permit only the relative ordering of profiles amongst one another, 
without regard to what the distance values imply in terms of absolute disparity. Put 
simply, Euclidean distance varies as a function of the magnitudes of the profile 
observations. Assume I compute a Euclidean distance of 26.19. If I divided every 
profile score by 10, and recomputed the Euclidean distance between the profiles, I 
would now obtain a distance value of 2.619. So, raw Euclidean distance is acceptable 
only if relative ordering amongst a fixed set of profile attributes is required. But, even 
here, what does a figure of 26.19 actually convey? If the maximum possible 
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observable distance is 30, then we know that the profile being compared is almost 
maximally discrepant. But, if the maximum observable distance is 1000, then a value 
of 26.91 indicates near identity. The fact of the matter is that unless we know the 
minimum and maximum possible values for a Euclidean distance, we can do little 
more than rank profiles in terms of their relative similarity, without ever knowing 
whether any or them are actually similar or not to a target profile. Note also here that 
Euclidean distance is "blind" to the direction of the differences between a target 
profile and comparison profile. That is, by taking the square of the difference, it 
effectively removes any information about the direction (above or below target) of 
such a difference. This can matter greatly in some profiling applications where being 
high or low on an attribute implies a completely different meaning about "lack of fit". 
Normalised Euclidean Distance 
The most obvious solution for expressing Euclidean distance in a standardized metric 
where 0.0 = absolute identity through to 1.0 = maximum dissimilarity is to normalize 
the raw Euclidean distance, dividing it by the maximum possible Euclidean distance 
observable between any comparison target score and the target profile score. Using 
the scores on the target profile, we can compute the maximum distance observable 
between any two profiles, given the maximum and minimum possible observable 
values for each attribute being compared, relative to the target value. That is, the 
maximum discrepancy between a target and comparison score is the largest possible 
difference between a profile target score on an attribute and the minimum or 
maximum possible score on that profile. The target profile attribute scores represent 
the minimum possible values for a comparison match as differences from these to 
either the minimum or maximum observable scores represents the range of 
dispersion. For example, take a profile consisting of three attributes 1, 2, and 3. The 
target values for these attributes are 5, 7, and 15. Two individuals are compared to 
this target using Euclidean and normalized Euclidean distance calculations. The 
relevant data are shown in Table 4 below. 
 
Table 4: Data for Euclidean distance calculations, with two individuals’ score profiles compared 

to a target score vector profile consisting of three attributes. 

 
 
Attribute 

 
 
Person 1 
Scores 

 
 
Person 2 
Scores 

 
Target 
Profile 
Scores 

Minimum 
Possible 
Attribute 
Score 

Maximum 
Possible 
Attribute 
Score 

1 6 8 5 0 14 
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2 5 12 7 0 18 
3 10 20 15 0 20 

 
The raw Euclidean distance is calculated using formula 3.9 for both persons, 

yielding values of 5.48 and 7.68 for person 1 and 2 respectively. In order to compute 
the normalized distance, we need to calculate the maximum possible discrepancy for 
each attribute (1 to 3), relative to the target value on each attribute. So, for attribute 
1, the maximum possible discrepancy will be between 5 (the target) and 14 (the 
maximum possible attribute score) = 9. For attribute 2, it will be between 7 and 18 = 
11. For attribute 3, it will be between 0 and 15 = 15. Thus, our maximum attribute 
distances are 9, 11, and 15 respectively. We sum the square of these and take the 
square root of this sum to yield the maximum possible Euclidean distance between 
the target and any set of profile scores. Then, each person’s raw Euclidean distance is 
normalized into a 0-1 range by this maximum Euclidean distance constant. So, in our 
example, the sum of the squared maximum attribute differences is 427, whose square 
root is 20.664. This is our normalizing constant. Thus person 1’s normalized 
Euclidean distance is 5.48/20.664 = 0.27. Person 2’s is 0.37. It is useful to express 
distance in terms of similarity, as this makes it easier to compare coefficients. Thus 
we simply subtract our coefficients from 1.0 to express the distance in a similarity 
metric, so person 1 and person 2 are assigned profile similarity measures of 0.73 and 
0.63 respectively. The coefficient is differentially sensitive to elevation, scatter, and 
shape. 
The Profile Similarity Coefficient (rp) 
The profile similarity coefficient (Cattell, 1969) or what has also been called the 
pattern similarity coefficient (Cattell, Coulter, and Tsuijoka, 1966; Cattell, Eber, and 
Tatsuoka, 1970; Cattell, 1978) was first introduced by Cattell in 1949. It was 
designed by Cattell (taken from: Cattell, Coulter, and Tsuijoka, 1966, p.296) to: 
1) take into account the metric and number of dimensions comprising the profiles 

to be compared 
2) compare the coefficient with the magnitude to be expected by chance 
3) provide a convenient function which behaves e.g. as regards distribution, in 

essentially the same general way as a pearson coefficient, varying from +1.0 
indicating complete agreement between profiles to 0 for no relation, and -1.0 for 
complete inverse relation. 
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the standard score of a comparison profile attribute  of  elements (scores)
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The meaning of an rp of +1.0 is that two persons or patterns have exactly the 

same profiles and fall on the same point in multidimensional space. A value of 0 
indicates that they fall as far apart as we would expect for any two points taken at 
random. A value of -1.0 means that they are at opposite ends of the distribution. 
Since the ends of a distribution are ill-defined and asymptotic, the value -1.0 is in 
actual practice approached but never quite reached, and there is in consequence a 
small asymmetry (positive skewing) in the distribution of rp about its median value of 
0. The coefficient is sensitive only to shape, as both elevation and scatter are equated 
by the deviation and normalisation by standard deviation. In order to make the rp 
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sensitive to elevation and scatter, we have to compute the rp using the actual raw data 
values themselves rather than use their standardized form in equation 3.10. To do this 
requires calculating the correct chance-expected squared deviation difference 
between two such profiles Ek, replacing the standardized variable standard deviations 
with the raw score counterparts.  

Importantly, this coefficient provides a significance test for its value - the null 
hypothesis being that a coefficient observed of size X has been sampled from a 
population distribution where the mean value is 0. Put another way, the comparison 
profile is more similar to the target profile than expected by chance alone. Horn 
(1961) provides the formula derivation and tables for such a test. 
Kernel Distance Coefficient 
My design of this coefficient was based upon the idea that a distance function could 
be shaped in such a way that if the simple arithmetic unsigned difference between a 
person’s attribute value and the target attribute value was computed to be within a 
certain range, then the computed distance should reflect a very small distance, almost 
regardless of the actual distance. But, as that distance grew larger, then the computed 
distance should be accelerated in size. In short, an “inertial” effect was aimed for – 
translated into a distance metric. The "shaped distance" design is in direct response to 
a need to "take control" or “shape” the distance function between two objects in 
space, as a function of their distance. So, small disparities between two profile scores 
would have little effect on the distance calculation, but, as the disparity grew greater, 
so would the distance be degraded in an accelerated fashion. The function chosen to 
achieve this was the normal distribution curve equation, with distance degradation 
acceleration controlled by the standard deviation parameter and the target profile 
value represented by the mean of the distribution function. Within the area of 
computational data smoothing and trend analysis, this kind of “inertial” effect is 
known as kernel density smoothing (Hastie et al, 2001). It has been applied here to 
permit the control of a distance function rather than to smooth data trends. As the 
distance between a target score value and a comparison score value increases, so the 
distance is accelerated between them once the distance moves beyond a region of 
little change (near the peak of such a distribution). The parameter controlling the 
“plateau” effect is the standard deviation of such a distribution; likewise, the 
acceleration in distance at larger values. For example, figures 16 and 17 below show 
the distance curves with standard deviations of 10 and 30 for five different target 
profile score values of 10, 20, 35, 50, and 75. The curves are constructed by 
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systematically varying comparative scale score values (those score values to be 
compared to the fixed target) from 0 through 100 in 1-unit steps.  

 
Figure 16: A kernel distance weighting function with standard deviation = 10. Comparison scores 

ranging between 0 and 100 are compared to five target scores of 5, 10, 35, 50, and 75. 

 

 
Figure 17: A kernel distance weighting function with standard deviation = 30. Comparison scores 

ranging between 0 and 100 are compared to five target scores of 5, 10, 35, 50, and 75. 
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The formula for this coefficient is: 
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where s = standard deviation 
p = the comparison score for an attribute 
t = the target score for an attribute 
N = the number of attributes in the target profile 

 
It is constructed to yield a percentage similarity measure, with 0% indicating 
maximum dissimilarity and 100% being absolute identity. The coefficient is 
differentially sensitive to elevation, scatter, and shape. 

3.A.3. The Expected Values for these Coefficients 

Two datasets were used to construct observed profile comparison coefficient 
distributions. One was a sample of 2011 individuals who had completed Psytech 
International’s Occupational Personality Profiler (OPP) questionnaire, and formed 
part of thei normative UK sample database of cases. The test provides raw scores 
ranging between 0 and 60 (although maximum possible values were different for 
each scale) on 10 personality scales.  These data were used to investigate the likely 
mean, median, and inter-quartile range of each of the profile comparison coefficients 
listed above, computed using each person’s profile both as a comparison and as a 
target score profile. That is, each person was compared to every other person in the 
dataset where one individual in the pair was selected as a target profile and the other 
the comparison profile; in all over 2 million (2,021,055) coefficient values were 
computed for each coefficient. A second dataset of 2011 cases was constructed with 
each case consisting of 10 integer-value scores constrained to range between 0 and 
60, sampling from a random normal distribution with a mean of 30 and standard 
deviation of 10. The scores were assigned randomly to each case, producing an 
essentially completely random score dataset. The purpose of this second dataset was 
to investigate the expected distributions of these coefficients when using random data 
instead of data which contained systematic covariance relations and, by definition, a 
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higher degree of between-case profile similarities. As with the first dataset, every 
case was compared to every other case with one being designated as a target profile 
and the other as a comparison. For the kernel distance coefficient, I used a value of 
4.0 for the standard deviation.The results of these analyses are provided in Tables 5 
and 6 below. 

 
Table 5: Summary statistics for eight profile comparison coefficients computed over 2011 

random data cases yielding 2,021,055 values per profile comparison coefficient. There 
are with 10 attributes per profile, each profile attribute score range is between 0 and 
60. All coefficients are expressed as similarity measures (the nearer to +1.0, the greater 
degree the similarity).  

Coefficient Mean Median Interquartile Range 
Pearson correlation 0.00 0.00 -0.24 / +0.24 
Intraclass Model 2 -0.01 0.00 -0.23 / +0.22 
Intraclass Model 3 0.00 0.00 -0.23 /  +0.23 
Congruence/Guttman’s � 0.91 0.92 0.89 / 0.94 
1-Alienation 0.60 0.60 0.54 / 0.66  
1-Normalised Euclidean Distance 0.57 0.58 0.51 / 0.65 
Cattell Profile Similarity  -0.06 -0.09 -0.19 / -0.04 
Kernel Distance Coefficient 0.27 0.27 0.19 / 0.35 

 
Table 6: Summary statistics for eight profile comparison coefficients computed over 2011 cases 

of personality questionnaire data (Psytech International’s Occupational Personality 
Profiler), yielding 2,021,055 values per profile comparison coefficient. There are with 
10 attributes per profile. All coefficients are expressed as similarity measures (the 
nearer to +1.0, the greater degree the similarity).  

Coefficient Mean Median Interquartile Range 
Pearson correlation 0.53 0.58 0.37 / 0.74 
Intraclass Model 2 0.50 0.55 0.34 / 0.71 
Intraclass Model 3 0.50 0.55 0.34 / 0.71 
Congruence/Guttman’s � 0.96 0.95 0.94 / 0.98 
1-Alienation 0.75 0.75 0.70 / 0.80 
1-Normalised Euclidean Distance 0.62 0.63 0.55 / 0.70 
Cattell Profile Similarity  0.30 0.30 0.13 / 0.48 
Kernel Distance Coefficient 0.43 0.43 0.34 / 0.53 

 
Table 5 provides the coefficient data computed using the random dataset. As can 

be seen from this table, using the random data sets, the Congruence, Alienation, and 
1-Normalised Euclidean Distance are all yielding coefficients that would ordinarily 
be taken as indicative of reasonable-to-excellent matches. These data show that these 
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coefficients should never be used for profiling applications because of their 
propensity to report coefficients from entirely random data which would be 
indistinguishable from coefficients computed over real data. This fact is brought 
home in reviewing the results from Table 6, where we see that little changes for these 
coefficients. The others by contrast show good separation from the random to real 
datasets. These results demonstrate the importance of ensuring that prior to selecting 
any coefficient for person-target profiling, it is critical to establish the likely range of 
values for such a coefficient prior to its use. However, as the data displayed in 
Figures 18 and 19 indicate, even this task is not sufficient to assure coefficient 
behavioral consistency.  

 
Figure 18: comparing two profiles composed of 6 attributes, whose values differ in only one 

attribute. 
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Figure 19: comparing two profiles composed of 15 attributes, whose values differ in only one 

attribute 

Here I have created two sets of profile data using sten scores across 6 and 15 
profile attributes respectively, in which the comparison and target profiles are exactly 
the same except for one scale which differs by 8 stens. Calculating the Pearson 
correlation, Pattern Similarity Coefficient, and Kernel Distance Coefficient (standard 
deviation = 1.5) on the data in Figure 18 yields values of 0.29, -0.20, and 83% 
respectively. Likewise for the data in Figure 19, the values are 0.63, 0.28, and 93% 
respectively. These figures serve as a warning that the pearson correlation and pattern 
similarity coefficient are extremely poor indicators of similarity in this kind of 
scenario. In Figure 19, all 14 scales have exactly equal scores – only the 15th attribute 
varies, albeit dramatically. Which coefficient of 0.63, 0.28, or 93% seems to best 
“capture” the similarity inherent in such data? This is a subjective choice – but one 
which will critically affect applications which rely upon a single coefficient to rank 
candidates. The overriding message I hope readers take from this brief analytical 
exposition is that constructing profiles is as much a design issue as it is an empirical 
issue, in that it requires careful computational simulation of expected values and 
boundary conditions, aligned to subjective visual perception of what might be said to 
constitute similarity and dissimilarity. After all, a profile containing 5 scores exactly 
the same and one discrepant score seems to be more similar than not, yet the Pearson 
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correlation for these data was just 0.29, and the profile similarity coefficient was -
0.20. 

4. Conclusion 

With respect to some of the analyses and coefficients considered above, 
especially with regard to shaping the distance metric and the two-dimensional profile 
distance metrics, it is important to mention a recent paper by Breiman (2001) 
describing the features and characteristics of what he calls the “two cultures” of 
statistics. The reason for this is that the kind of approach to profiling and the 
classification problem espoused in many sections of this chapter find much in 
common with the spirit and outlook of Breiman’s second culture. The essence of this 
paper is given in the abstract… 

“There are two cultures in the use of statistical modeling to reach conclusions 
from data. One assumes that the data are generated by a given stochastic data model. 
The other uses algorithmic models and treats the data mechanism as unknown. The 
statistical community has been committed to the almost exclusive use of data models. 
This commitment has led to irrelevant theory, questionable conclusions, and has kept 
statisticians from working on a large range of interesting current problems. 
Algorithmic modeling, both in theory and practice, has developed rapidly in fields 
outside statistics. It can be used both on large complex data sets and as a more 
accurate and informative alternative to data modeling on smaller data sets. If our 
goal as a field is to use data to solve problems, then we need to move away from 
exclusive dependence on data models and adopt a more diverse set of tools.” 

I view computational profile construction and person-target profiling as very 
much a “second-culture” application field. This is evident in my construction of the 
kernel distance coefficient as well as in the two and three dimensional profiling 
applications outlined above. The aim is always to maximize cross-validated accuracy 
and not to simply use coefficients or other procedures with which others may be more 
familiar or which possess known hypothetical distribution characteristics and an 
accompanying set of assumptions, however desirable these may be in terms of 
statistical theory. Hence, the stress placed here, and by algorithmic modelers, on 
computational simulation of any chosen coefficient prior to its use as a means of fully 
understanding the coefficient behaviour and its expected values over a wide set of 
data. Simply knowing the boundary conditions for maximum 
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agreement/disagreement is only partially useful – it’s what happens “in between” 
these that matters, and the conditions under which the coefficient will yield 
apparently spurious albeit consistent results. Modern algorithmic-driven person-target 
profiling is in its infancy, but with the new tools, procedures, and capability to model 
most conditions and complex sample data for which a preferred solution might be 
used, the chances of making a magnitude difference in outcomes must surely be 
attractive to those areas of commercial practice which would benefit from profiling 
individuals. Person-Target profiling has the capacity to provide a very substantial 
return on investment to a company – but only if applied intelligently using 
computationally-intensive procedures for cross—validation and scenario-exploration. 
It remains to be seen which companies will seriously explore this capacity. 
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