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The intent of a binomial effect size display (BESD) is to show “the [real-world] importance
of [an] effect indexed by a correlation [r]” (R. Rosenthal, 1994, p. 242) by reexpressing this
correlation as a success rate difference (SRD) (e.g., treatment group success rate� control
group success rate). However, SRDs displayed in BESDs generally overestimate real-world
SRDs implied by correlations of (a) dichotomousX and Y variables (� coefficients), (b)
dichotomousX and continuousY variables (point-biserial coefficients [rpbs]), and (c) con-
tinuousX andY variables (rxys). Furthermore, overestimation biases are larger forrxys than
for rpbs. Differences in the sizes of biases linked to different correlations suggest that BESD
SRDs reported for different correlations are not comparable. The stochastic difference index
(N. Cliff, 1993; A. Vargha & H. D. Delaney, 2000) is recommended as an alternative to the
BESD.

Rosenthal and Rubin (1982) proposed “an intuitively
appealing general-purpose effect size display whose inter-
pretation is perfectly transparent: the binomial effect size
display (BESD)” (p. 166), which is intended to show “the
real-world importance [italics added] of treatment effects”
(Rosenthal, 1987, p. 117). More specifically, Rosenthal and
Rubin stated that the BESD “displays the change in success
rates (e.g., survival rate, cure rate, improvement rate, selec-
tion rate, etc.) attributable to a certain treatment procedure”
(p. 166), and Rosenthal (1990) noted that this success rate
difference (SRD) shows “thepractical importance [italics
added] of any effect indexed by a correlation coefficient” (p.
775). Emphasis on the BESD’s relevance to real popula-
tions has been restated in some of Rosenthal’s most recent
writings: The BESD shows “thereal-world importance
[italics added] of any treatment effect” (Rosenthal, 2002, p.
844).1

The operational definition of a BESD SRD for “any
obtained effect sizer” (Rosenthal, 1994, p. 242) is seduc-
tively simple: “We obtain the BESD . . . by computing the
treatment condition success rate as (.5 plusr/2) and the
control condition success rate as (.5 minusr/2)” (Rosenthal,
1994, p. 242). The BESD SRD is then operationally defined
as follows:

BESD SRD� ��.5 � r/2� � �.5 � r/2�� � r, (1)

where r is (see Rosenthal, 1994) any obtained Pearson
product–moment correlation (e.g.,rpb, rxy, or �). Note that
if r is calculated on population data, the operational defini-
tion of the BESD SRD would yield what might be called a
BESD SRD effect size parameter.

Rosenthal and Rubin (1982) illustrated how the BESD
SRD would be calculated in a 2� 2 table showing the
relation of an independent variableX (treatment, control) to
a dependent variableY (alive, dead). In this table, which had
uniform marginal distributions (100 patients per category of
X and 100 patients per category ofY) the proportions of
treated and control patients who survived were, respec-
tively, .66 and .34, and ther or � was .32. Applying
Equation 1, the BESD SRD� (.5� .32/2)� (.5� .32/2)�
(.66� .34)� .32: This BESD SRD was exactly equal to the
actual SRD displayed in the table (viz., actual SRD�
66/100� 34/100)� .32. What may not be apparent from
Rosenthal and Rubin’s illustration is that the equality of the
BESD SRD (calculated from Equation 1) and actual SRD of
a 2� 2 table does not generalize to 2� 2 tables that do not
have uniform marginal distributions.

It can generally be shown (see, e.g., Strahan, 1991) that
whenever a study of a real-world population yields a 2� 2
table with uniform marginal distributions, the� (or r) of this
real-world population, and therefore its BESD SRD param-
eter (see Equation 1), will exactly equal its actual SRD
parameter (calculated from frequencies reported in the ta-
ble). None of the major critics of the BESD (viz., Crow,

1 For an excellent discussion of a broad range of issues related
to the meaning of practically and clinically important treatment
effects, see Kazdin (2003, chapter 14).
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1991; McGraw, 1991; Preece, 1983; Strahan, 1991; Thomp-
son & Schumacker, 1997) have questioned, in the case of a
study that yields a 2 � 2 table with uniform marginals, the
validity of Rosenthal and Rubin’ s (1982) statement that the
BESD SRD (operationally defined in Equation 1) is “per-
fectly transparent” and “easily understood” (p. 166) or their
belief that the BESD SRD can provide practically important
information about an effect in a real-world population:
Then, the BESD SRD defined as BESD SRD � r equals a
real-world SRD.

However, Rosnow, Rosenthal, and Rubin (2000) did not
suggest restricting the use of the BESD to empirically
observed 2 � 2 tables with uniform marginals or limiting
the use of the BESD to specific types of research designs
(e.g., naturalistic, prospective, retrospective, random; see
Carroll, 1961; Fleiss, Levin, & Paik, 2003). Quite the con-
trary, they noted that (a) BESDs provide useful information
about real-world SRDs for any Pearson correlation and for
any “effect size estimate that can be converted to [a Pearson
r]” and (b) “any product–moment correlation [can be recast]
into such a display, whether the original data is continuous
or categorical [italics added]” (Rosnow et al., 2000, p. 451).
Furthermore, Rosenthal (1995b) stated that although “ the
input to the BESD is a specific effect size estimate, the
Pearson r, . . . any other effect size estimate can be con-
verted to r” (p. 190). In addition, Rosenthal (1995b) stated
that “ the BESD can be used to display the mean or median
effect size estimate of any meta-analysis” (p. 190); exam-
ples of this type of application include Rosenthal’ s (2002)
meta-analyses of the literature on interpersonal expectancy
effects and Hiller, Rosenthal, Bornstein, Berry, and Brunell-
Neuleib’ s (1999) meta-analyses on relative validities of
Minnesota Multiphasic Personality Inventory (MMPI) and
Rorschach scales.

The BESD SRD is one of the most recent additions to the
existing collection of more than 20 effect size indices ex-
amined by Huberty (2002). Despite its recent origin, the
BESD has been used extensively: A recent search (August
26, 2003) of the American Psychological Association’ s
full-text journal articles data base yielded 360 documents in
response to binomial effect size display. One reason for this
popularity is undoubtedly the observation (see Rosenthal,
1990, 1995a, 2002; Rosnow & Rosenthal, 1988) that
BESDs have often suggested large and practically important
effects when other effect size indices have not. In fact
Rosenthal (1990) concluded that “ the BESD has shown that
we are doing considerably better . . . than we may have
thought we were doing” (p. 777).

A second reason for the BESD’s popularity is undoubt-
edly its perceived ability to provide a common metric for
comparisons of magnitudes of effects across heterogeneous
studies—for instance, studies differing in terms of objec-
tives, outcome measures, effect size statistics, and so forth
(e.g., Hiller et al., 1999).

Because the BESD SRD parameter, defined in Equation 1
as BESD SRD � r, has only been shown to be equal to the
actual SRD parameter of a population when the reported r is
for a 2 � 2 table with uniform marginal distributions (see
Strahan, 1991), and because rs reported in studies are al-
most never rs (or �s) for 2 � 2 tables with uniform
marginals, attempts to draw inferences about actual SRDs in
real-world populations from BESD SRDs (defined as equal
to reported rs) generally require “ transform[ing]” (Rosnow
& Rosenthal, 1996, p. 338) or “ recast[ing]” (Rosnow &
Rosenthal, 1988, p. 207) the reported data into 2 � 2 tables
with uniform marginals. Serious consequences of this re-
casting generally include lack of realism of resulting tables
and large overestimation biases of BESD SRDs relative to
the actual real-world SRDs they are intended to estimate.
However, nonnegligible overestimation biases of BESD
SRDs may also be present when the recasting is realistic.
Therefore the real-world meaning of BESD SRDs cannot
(as I see it) be considered “perfectly transparent [or] easily
understood” (Rosenthal & Rubin, 1982, p. 166).

The present article focuses on the measurement of biases
of the SRDs displayed in BESDs: It shows that, as opera-
tionally defined, BESD SRD parameters are often larger
(and sometimes much larger) than the real-world SRD pa-
rameters of interest to BESD users (and are therefore “bi-
ased” in that sense), and that factors (including types of
correlations—e.g., rxy vs. rpb) that affect the relative sizes of
the BESD SRD biases can invalidate comparisons of BESD
SRDs. This article shows that biases of BESD SRDs can
occur because of a violation of either of two important
assumptions: (a) the uniform marginals assumption and (b)
the constancy of correlations assumption. The exact real-
world meanings of these assumptions differ for different
types of correlations (�, rpb, rxy) and are fully described
under separate headings (see Cases 1–4). However, for any
type of r, both of these assumptions must be tenable if
BESD SRDs are to address, as intended, practically impor-
tant real-world questions.

Authors who have endorsed the BESD (viz.,
Rosenthal, 1990, 1991, 1995a, 2002; Rosenthal & Rubin,
1982; Rosnow et al., 2000) have not ignored the BESD
SRD bias problem but have suggested (see, e.g.,
Rosenthal, 1991; Rosenthal & Rosnow, 1991; Rosenthal
& Rubin, 1982; Rosnow & Rosenthal, 1988) that biases
are generally negligible, given uniform marginal distri-
butions in the recast tables (see Case 2). However, these
authors have paid little attention to biases that result
when real-world marginal distributions are not uniform in
the case of rxys, rpbs and �s or when constancy of
correlations is not present in the case of �s—that is,
when the � coefficient of the observed 2 � 2 table
(regardless of marginal distributions) is not equal to the
� for real-world data that would yield a 2 � 2 table with
uniform marginals (see Case 1 below).
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In addition, neither authors who have recommended the
BESD (e.g., Rosenthal, 1990, 1991, 1995a, 1995b, 2002;
Rosenthal & Rubin, 1982; Rosnow et al., 2000) nor those
who have criticized it (Crow, 1991; McGraw, 1991; Preece,
1983; Strahan, 1991; Thompson & Schumacker, 1997) have
provided any quantitative information about biases of
BESD SRDs that correspond to Pearson rs calculated on
continuous (interval- or ratio-scaled) X and Y variables
(rxys), even though (a) users have been encouraged to de-
termine BESD SRDs for all types of Pearson rs (Rosenthal,
1990, 1994, 2002; Rosnow et al., 2000), (b) Pearson rxys
calculated on continuous X and Y variables are very popular
effect size statistics (see Cohen, 1988; Hunter, Schmidt, &
Jackson, 1982; Meyer et al., 2001; Rosenthal, 1994), and (c)
BESD SRDs have been calculated extensively for Pearson
rxys applied to continuous X and Y variables in several
important meta-analyses (e.g., Hiller et al., 1999; Meyer et
al., 2001).

BESD SRD biases are discussed in this article in the
context of four types (or cases) of rs that have been reported
in published studies: Case 1, defined as �s for naturally
dichotomous X and Y variables; Case 2, defined as rpbs for
naturally dichotomous X and continuous Y variables; Case
3, defined as rxys for continuous X and Y variables; and Case
4, defined as rpbs for artificially dichotomized X and con-
tinuous Y variables.

Case 1: Naturally Dichotomous Independent (X) and
Dependent (Y) Variables: Synthesis and Implications

of Published Critiques of BESDs

Almost all of the published criticisms of the BESD
(Crow, 1991; McGraw, 1991; Preece, 1983; Strahan, 1991;
Thompson & Schumacker, 1997) have focused on the lack
of real-world relevance of “data” generated by the transfor-
mation or recasting of the raw X and Y data into 2 � 2 tables
with uniform marginals and on the consequent lack of
relevance of the BESD SRDs to the real-world questions
that are of interest to researchers (see, in particular, Crow,
1991; McGraw, 1991; Strahan, 1991). However, interpreta-
tions of these criticisms, as well as of biases of BESD SRDs
discussed in the present article, depend on whether the
concepts of (a) uniform marginals and (b) constancy of
correlations are viewed as postulates (whose realism is not
considered relevant) or as assumptions (whose realism is
viewed as relevant).2 Important differences in these inter-
pretations are illustrated below with results of the Physi-
cians’ Aspirin Study (Rosenthal, 1995a, p. 135), a real-
world study frequently cited in Rosenthal’ s writings about
the BESD.

The aspirin study was a double-blind randomized design
in which about half of 22,071 physicians received aspirin
and the other half received a placebo. The proportion of all
physicians who experienced heart attacks (denoted here as

	) was .0133; the � for the study’s 2 � 2 table (aspirin vs.
placebo, heart attack vs. no heart attack) was .034; the
proportions of heart attacks among those who received, and
did not receive, aspirin were .0094 and .0171, respectively;
and the observed SRD (difference in the heart attack rates of
the two groups) for this real-world population was thus
.0077 (about .008).

Curiously, the BESD SRD, which is intended (a) to be a
measure of the magnitude of the effect of aspirin in a
real-world population and, more specifically, (b) to “display
the increase in success rate due to treatment” (Rosnow &
Rosenthal, 1989, p. 1279) is not .008 but .034 (more than
quadruple the SRD found in the real-world study). Unam-
biguous explanations of the difference between the reported
SRD and the BESD SRD may be found in equations derived
in Preece (1983; especially his results shown in Equation 2,
below) and Thompson and Schumacker (1997) and in the
work of Crow (1991), McGraw (1991), and Strahan (1991):

Actual SRD � 2����1 � ���.5. (2)

Equation 2 shows the relation of the actual SRD to the
success rate for the combined groups (�) and to the corre-
lation (�) in any 2 � 2 table that has a uniform marginal
distribution for X (i.e., equal group size in the two groups).
Equation 2 is implicit in the calculation of Case 1 BESD
SRDs. Application of Equation 2 to the aspirin study data
helps in understanding both the logic and the limitations of
the BESD SRD for Case 1. Given that the � coefficient does
not change across total success rates (�) (i.e., given con-
stancy of the correlation in Case 1), the observed � of .034
in the aspirin study in which � � .013 and SRD � .008
implies (a) the relation SRD � (2)(.034)[�(1 � �)].5

(graphed in Figure 1) and, more specifically, (b) a BESD
SRD � .034 (because the BESD SRD is the SRD for a
uniform marginal distribution of the dichotomous Y (suc-
cess, failure) “scores”—that is, � � .5, so that SRD �
2(.034)[.5(.5)].5 � .034). But how should this BESD SRD
of .034 be interpreted? The two perspectives on the meaning
of the BESD SRD, which differ in terms of whether uniform
marginals and constancy of � are viewed as postulates or as
assumptions, can now be presented.

Interpreting Uniform Marginals and Constancy of �
as Postulates

One interpretation of BESD SRDs considers (a) con-
stancy of the correlation � as a theoretical premise or
postulate. The BESD SRD parameter is then simply defined
as the value of the SRD when (b) the total success rate is .50
(this may be viewed as a homogeneity of marginal Y dis-

2 I thank an anonymous reviewer for drawing my attention to the
“postulates” interpretation of the BESD SRD.
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tribution postulate). Given postulates (a) and (b), the BESD
SRD parameter will always be equal (by definition) to the
value of the observed � coefficient, regardless of the ob-
served value of the total success rate (�). Thus from this
perspective, the fact that the aspirin study yielded � � .034
means that (regardless of the observed total success rate �)
the BESD SRD parameter must by definition be .034. Ques-
tions about realism of (a) and (b) are considered moot; (a)
and (b) are, in effect, simply components of the definition of
the BESD SRD. The BESD SRD is not a parameter (or
estimate of a parameter) in a real-world population but an
effect size parameter defined in the context of a two-postu-
late theory.

This definition of the BESD SRD parameter may be
considered analogous to definitions of the unrestricted range
validity coefficient parameter (�xy) when range restriction is
present on variable X. One definition of this �xy parameter
(see Ghiselli, Campbell, & Zedeck, 1981, p. 299) is as
follows:

�xy �
�
xy��x/�
x�

�1 � �
xy
2 � �
xy

2��y
2/�
y

2�� .5 , (3)

where �xy � the unrestricted range validity coefficient, �
xy

� the restricted range validity coefficient, �x � the full
range standard deviation of X scores, �
x � the restricted
range standard deviation of X scores, �y

2 � the full range
variance of Y scores, and �
y

2 � the restricted range variance
of Y scores. Equation 3 is derived from a model that pos-
tulates (A) linearity of the regression of Y on X over the full
range of X and (B) equality of standard errors of estimate for

the restricted and unrestricted ranges (see Ghiselli et al.,
1981). From a theoretical perspective (A) and (B) could
simply be viewed as components of the definition of the
unrestricted range parameter �xy, just as from that perspec-
tive (a) and (b) could simply be viewed as components of
the definition of the BESD SRD. From this perspective the
parameters �xy and BESD SRD are theoretically meaningful
concepts irrespective of the realism of their underlying
postulates.

Interpretations of the unrestricted range correlation pa-
rameter (�xy) and of the BESD SRD effect size parameter,
which consider (A) and (B) (in the case of �xy) and (a) and
(b) (in Case 1 applications of the BESD SRD) exclusively
as postulates whose realism can be ignored, are certainly
defensible perspectives on the meanings of these parame-
ters. However, these perspectives are of theoretical rather
than practical importance. This follows from the fact that
the parameters (�xy in Equation 3 and BESD SRD in Equa-
tion 2) will lack real-world relevance unless their postulates
hold (which they may or may not) in real-world populations.

Interpreting Uniform Marginals and Constancy of �
as Assumptions About the Real World

The BESD SRD � .034 of the aspirin study indicates,
according to Rosnow and Rosenthal (1989), “ that approxi-
mately 3.4% fewer persons who would probably experience
a myocardial infarction . . . will not experience it if they
follow the regimen as prescribed in the aspirin treatment
condition” (p. 1279). This view is consistent with the intent
of showing in the BESD “the real-world importance of a
treatment effect” (Rosenthal, 2002, p. 844) and of “display-
[ing] the increase in success rate due to treatment” (Rosnow
& Rosenthal, 1989, p. 1279).

However, it is suggested that six caveats—implied by
Equation 2 and Figure 1 when (a) and (b) are viewed as
assumptions rather than postulates—should be considered
in relation to any attempt to interpret the BESD SRD of .034
as a measure of the magnitude of the effect of aspirin on
heart attacks in a real-world population. It should be noted
that the BESD SRD of .034, first, is not an SRD that has
been observed in any real-world population but, second, is
instead only an estimate or prediction of what the SRD
would be, given uniform marginals—that is, in a relatively
high-risk (�BESD/�OBSERVED � 0.5/.0133 � 37) real-world
population, which, third, is based on a functional relation
(shown in Figure 1) between the actual SRD and the total
success rate (�), in which constancy of � across real-world
populations that differ in � values is assumed. Because this
function, fourth, is empirically supported by exactly 1 da-
tum point (.0133, .008; see Figure 1), every other point
including the BESD SRD � .034 is therefore a risky
extrapolation.

In addition, it should be noted that, fifth, if the function

Figure 1. Implication of the binomial effect size display’ s
(BESD’s) constancy of � assumption concerning the relation of
the success rate difference (SRD) to the total success rate when
� � .034.
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(see Figure 1) is realistic, the BESD SRD will overestimate
the SRD for all populations in which the total heart attack
rate (	) differs from .50—that is, whenever the uniform
marginals assumption is not realistic. Finally, it should be
mentioned that, sixth, if the constancy of � assumption is
not realistic, BESD SRDs provide no information whatso-
ever about the magnitude of the effect of aspirin on heart
attacks for any real-world population, irrespective of the
tenability of the uniform marginals assumption. Clearly,
these six caveats raise questions about the extent to which
any Case 1 observed BESD SRD value provides, as
claimed, practically important information about the effect
of a treatment in a real-world population.

What is apparent from Equation 2 (illustrated in Figure 1)
is that the choice of a 2 � 2 table with uniform marginals
(made in the definition of the BESD) is, in fact, an arbitrary
choice to recast data into a 2 � 2 table that maximizes the
SRD for any fixed � coefficient. This is because, as noted
by Thompson and Schumacker (1997) and Preece (1983),
the maximum value of [�(1 � �)]1/2 in Equation 2 occurs
for � � .5 (i.e., uniform Y marginals). From this perspec-
tive, then, the BESD SRD is the most optimistic of an
infinite number of SRDs that would be consistent with the
assumption of constancy of the � coefficient. Therefore,
aside from the main problem of the realism of the constancy
of � assumption, the next most important problem is that if
all known real-world populations yield uneven splits on Y
(i.e., not 50% success and 50% failure), BESD SRDs, as
operationally defined (see Equation 1), will not only be
inaccurate but also will be consistently too large; that is, the
BESD SRDs will overestimate the actual SRDs of all
known real-world populations.

Case 2: Naturally Dichotomous Independent
Variable and Continuous Dependent Variable (the

Binormal Model)

The typical comparative efficacy study involves a natu-
rally dichotomous independent variable X (e.g., treatment
and control groups, preferably of about equal size; see Hsu,
1993) and a continuous dependent variable Y (e.g., MMPI
scale scores; see, e.g., Rosenthal, 2002; Svartberg & Stiles,
1991). Tests of significance of group mean differences that
are generally carried out in studies of this type are pooled
variance t tests or other parametric tests that assume nor-
mality of distributions of Y scores, independence, and ho-
mogeneity of variance. This model is referred to as the
binormal model3 in the present article (for descriptions of
situations in which the homogeneity of variance assumption
is unrealistic, see Grissom, 2000).

Effect size indices often used to measure the magnitudes
of the effects of X on Y in Case 2 are Cohen’s d (see Cohen,
1988) and the rpb (the point-biserial correlation of a dichot-
omous and a continuous variable that is often inferred from

d, t, F ratios, or Cohen’s overlap statistics [Us; see Cohen,
1988]). The SRD of the BESD is set equal (see Equation 1)
to this rpb (e.g., Rosenthal, 2002; Svartberg & Stiles, 1991).
Formulas for rpb and d can be found in the Appendix.

For Case 2 the recasting of the raw data into a 2 � 2 table
with uniform marginals (on both X and Y) to determine the
BESD SRD requires considering that the same number of
persons have been assigned to each of the two levels of X
(e.g., the same number of persons have been assigned to the
treatment as to the control condition) and that the cut score
separating success from failure is the median of the Y score
distribution of the combined groups (see Lipsey, 1990).
Thus, the uniform marginals assumption for the dependent
variable in Case 2 has different real-world implications than
the same assumption in Case 1: In Case 1, in which Y is a
naturally dichotomous outcome (e.g., heart attack vs. no
heart attack, alive vs. dead, etc.), the uniform marginal
distribution of Y scores is achieved by hypothesizing that
there exists a population in which the success rate is .5; the
BESD SRD is then an estimate of an SRD for a population
that was not actually observed. Given the tenability of the
assumption that such an unobserved population exists, the
BESD may (if the constancy of correlations assumption is
tenable) provide useful information about the size of an
effect in the real world.

In Case 2, on the other hand, the uniform marginals
assumption involves changing a cut score for labeling an
outcome as a success but does not imply that the BESD
SRD is an estimate of an SRD in a different population than
the one that was actually observed; rather, the BESD SRD
is an estimate of the SRD in the population that was ob-
served, but for a cut score that has been adjusted to yield the
uniform marginal Y distribution required by the BESD
model. Questions about the realism of this assumption in
Case 2 concern whether the median split yields success and
failure categories that make real-world sense.

The second assumption of the BESD method for Case 2
is that the observed point-biserial correlation (rpb) of the
naturally dichotomous and continuous variables is equal to
the � coefficient for the recast 2 � 2 table. This differs from
the second assumption for Case 1, which was that the �
coefficient of the observed 2 � 2 table equals the � coef-
ficient that would be observed in a study yielding a uniform
marginals 2 � 2 table. The tenability of the second assump-

3 The expression binormal distribution is sometimes used inter-
changeably with bivariate normal distribution. However, in this
article binormal is used to refer to two normal distributions whose
variances are equal, one associated with each level of the inde-
pendent variable: for example, one associated with a treatment
condition and the other associated with a control condition. Ho-
mogeneity of variance is also a characteristic of the bivariate
normal model (see Sheskin, 2000).
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tion in Case 1 has to be addressed by determining empiri-
cally the � of the new population implied by the first
assumption—for example, the actual � in a real-world high-
risk (	 � .50) population of physicians. In contrast, the
tenability of the second assumption in Case 2 can be ad-
dressed mathematically (given known distributions of Y
scores—e.g., given the binormal model). This section fo-
cuses on biases of BESD SRDs for the binormal model
when the assumption of uniform Y marginals is realistic
(Case 2a) as well as when it is unrealistic (Case 2b).

Case 2a: Bias of BESD SRDs When Median Splits
on X and Y Are Realistic (Binormal Model)

Rosenthal and Rubin (1982) showed how to calculate
exact values of SRDs for the recast binormal data (see the
Appendix). After comparing these values to the BESD SRD
(viz., rpb), they concluded that the biases of the BESD SRDs
(in relation to the exact SRDs) were in most cases small and
negligible (Rosenthal & Rubin, 1982). Their method was
used to generate, for the binormal model, the exact values of
these biases corresponding to rpbs from 0 to 1.00 (see the
Case 2a curve in Figure 2). It should be emphasized that
these “biases” are differences between actual SRD param-
eters and BESD SRD parameters when the median split
used to define success and failure yields classifications
consistent with real-world definitions of success and failure
(i.e., when the uniform marginals assumption is realistic).

Consider that the rpb reported in a study is .30 (a realistic
value for the point-biserial correlation—e.g., Rosenthal,
2002, noted that the mean rpb obtained in a recent meta-
analysis of 479 studies on the experimenter expectancy
effect was .30). The BESD SRD would then be .30 (see
Equation 1). The vertical distance between the Case 2a
curve in Figure 2 and the no-bias line at the abscissa (i.e.,
the BESD SRD) of .30 is .05, showing that the BESD SRD
overestimates the SRD by .05. What becomes immediately
apparent from an inspection of the Case 2a curve in Figure
2 is that the bias of BESD SRD is (a) generally small
(consistent with comments of Rosenthal & Rubin, 1982)
and, more important, (b) generally positive (overestimation)
for values of rpb that are most frequently reported in the
literature (rpb � .76). Point (b) is particularly important
because of the intent that BESDs provide practically useful
information about magnitudes of effects in real-world pop-
ulations: Note that an rpb correlation of .76 corresponds to a
d value of 2.34 in the binormal model (see Cohen, 1988)
and that ds � 2.34 are rarely reported in meta-analyses (see
Lipsey & Wilson, 1993); values of rpb � .76 are equally rare
(see Meyer et al., 2001).4 Meta-analyses that rely on BESD
SRDs can therefore be expected to consistently overesti-
mate effect sizes of Case 2a studies.

Case 2b: BESD SRD Biases When the Median Split
Definition of Success and Failure Is Not Realistic
(in the Binormal Model)

The principal published criticism of the BESD applied to
binormal data concerns the lack of realism of the median
split of the dependent variable Y required for the uniform
marginal distributions in BESDs. As noted by Preece
(1983),

the use of a median split to dichotomize the outcome variable
may be inappropriate. Success may be a cure following psycho-
therapy or gaining entrance to university . . . and in such cases
the overall success rate [�] cannot be controlled by the exper-
imenter and the value of 0.50 may be quite unrealistic. (p. 764)

Similar points appear in Thompson and Schumacker (1997),
together with the warning that “ the BESD [can] greatly
[exaggerate] the change in success rate . . . when the bino-
mial success rate departs markedly from 50%” (p. 114).
Realism of the uniform marginals assumption for the inde-
pendent variable has not been called into question by most
critics (and is also not considered an issue in the present
article) because the independent variable is usually under
the control of researchers, and because researchers generally
choose to include an (approximately) equal number of per-
sons in treatment and control groups (see, e.g., Cohen, 1988;

4 The presence of publication and accessibility biases in meta-
analyses, especially when targeted studies involve treatment versus
control group contrasts (Hsu, 2000, 2002b), implies that ds � 2.34
and rs � .76 actually occur even more rarely in real-world popu-
lations than has generally been reported in meta-analyses.

Figure 2. Extent to which the binomial effect size display suc-
cess rate differences (BESD SRDs) over- and underestimate the
actual success rate differences in Cases 2, 3, and 4 when the
assumption of uniform marginals for X and Y is tenable.
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Hsu, 1993; Kazdin, 2003; Thompson & Schumacker, 1997).
Furthermore, when X is a continuous predictor variable, it is
almost always both feasible and meaningful to dichotomize
this variable at the median of the combined groups (see
Case 4 below).

Although critics have drawn attention to the inaccuracies
of BESD SRDs when the Case 2 median Y split is unreal-
istic, none have actually calculated the biases caused by this
lack of realism. Furthermore, neither the formulas presented
in Rosenthal and Rubin (1982) nor those proposed and used
in Preece (1983) and Thompson and Schumacker (1997) are
relevant to the measurement of Case 2b biases. However,
the directions and sizes of Case 2b biases may easily be
determined: Define the cut score (zc) that separates suc-
cesses from failures on the outcome measure on Cohen’s d
scale (whose unit of measurement is �, the common within-
group standard deviation), equating the zero point on the
scale with the mean of the control group. Then, given that in
the binormal model distributions of the outcome measure
are normal with equal variances, the success rate for each
group (X value) may be determined for any cut score zc:

P�Success�Control Group� � P�z 	 zc�

P�Success�Treatment Group� � P� z 	 �zc � d��, (4)

where z � the standard normal variable. The actual SRD for
the binormal model will therefore be as follows:

Actual SRD � P� z 	 �zc � d�� � P�z 	 zc�. (5)

Because the BESD SRD is defined, in Case 2, as follows
(see Equation 1),

BESD SRD � rpb, (6)

the bias of the BESD SRD that is caused by lack of realism
of the median split on the outcome measure (Y) is therefore
as follows:

Case 2b BESD SRD bias � rpb

� 
P� z 	 �zc � d�� � P�z 	 zc��. (7)

The following example illustrates how Equations 4–7 can
be used to measure the BESD SRD biases for Case 2b.
Consider that the d reported for a study is 0.63 (i.e., the
means of the treatment and control groups are 0.63 standard
deviation units apart) and that a realistic definition of suc-
cess places the cut score at 2.00. (Note that a cut score 2
standard deviations from the mean of the functional popu-
lation is one of Jacobson & Truax’s, 1991, three definitions
of a cut score that can be used to identify patients who
benefit in a clinically significant way in therapy; see also
Hsu, 1996.) That is, zc � 2.00. Then Equations 3 and 4
imply that the success rates for the control and treatment

groups would be P(z � 2.00) � .023, and P[z � (2.00 �
0.63)] � .085, respectively. The actual SRDpb would there-
fore be (by Equation 5) .085 � 0.023 � .062. The BESD
SRD is the rpb corresponding to d � 0.63, namely, rpb � .30
(as determined from Cohen’s, 1988, p. 23, formula relating
d to rpb in the binormal model):

rpb � d/�d2 � 4�.5.

Therefore, using Equation 7, the bias of the BESD SRD
relative to the actual SRD yielded by Equation 5 would be
.300 � .062 � .238. In other words, the BESD SRD
overestimates the SRD by .238, or, interpreted as a ratio, the
BESD SRD is almost 5 times (i.e., .300/.062 � 4.839) too
large. Equations 4–7 were used to generate actual SRDs for
two rpbs (.30 and .70) for various cut scores extending from
zc � �2.00 to zc � 2.60 for the binormal model. These
SRDs are shown in Figure 3, together with the BESD SRDs
(horizontal lines) corresponding to the two rpbs. For each
cut score (defined on Cohen’s d scale) the vertical distance
between the actual SRD and the corresponding BESD SRD
indicates the size of the bias. Thus, for the example, the
actual SRD for a cut score of 2.00 is indicated by an
ordinate of .062 on the lower curve, and the BESD SRD for
this cut score (or any other cut score) is .30 for an rpb � .30
and is indicated by an ordinate of .30, so that the vertical
distance between these two points indicates a bias of .238
(the value calculated for the above example). This assumes
that the realistic definition of success involves the Jacobson
and Truax (1991) clinical significance cut score—that is, an
outcome measure greater than zc � 2.00. Vertical distances

Figure 3. Comparisons of binomial effect size display success
rate differences (BESD SRDs) to actual SRDs for various cut
scores (and total success rates) and for two values of point-biserial
correlations (.30, .70) given binormal distributions.
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corresponding to cut scores zc � 0.50, that is, abscissas of
.32 (for rpb � .30) and .98 (for rpb � .70), indicate biases
corresponding to median splits in the Y distributions of the
combined groups.

Several important facts are illustrated in Figures 2 and 3.
First, for rpbs that are less than about .76 (i.e., d � 2.34), the
biases, when the Y median split is realistic, are consistently
overestimation biases (assuming that results of the study
were in the predicted direction), suggesting overly optimis-
tic estimates of efficacy of the treatment (see the Case 2a
curve in Figure 2). Second, paralleling Case 1 findings (see
Equation 2) of Thompson and Schumacker (1997) and
Preece (1983), the overestimation biases for Case 2 (based
on Equations 3–7) are very large for Y splits that differ
considerably from a median split (see Figure 3). Third, the
minimum overestimation biases occur for the median splits
(see Figure 3). Fourth, the size of the bias is calculable from
information about the realistic cut score (on Cohen’s d
scale) that differentiates successes from failures and from
the value of the point-biserial correlation (see Figures 2 and
3). Fifth, because the point-biserial correlation is generally
reported (or may be calculated from reported statistics), this
implies that the direction and size of the BESD SRD bias
can generally be determined, using readily available infor-
mation, for any cut score that a researcher considers to
provide a reasonable definition of success and failure.

Case 3: Continuous Independent (X) and Dependent
(Y) Variables (the Bivariate Normal Model)

The typical Pearson correlation for two continuous vari-
ables that has been interpreted using the BESD is probably
a concurrent or predictive validity correlation involving two
scales or one scale and one continuous criterion variable
(see, e.g., Hiller et al., 1999). Tests of significance of
correlations of continuous variables (which are usually car-
ried out in studies that have yielded the rxys) have often been
derived under assumptions of bivariate normality (see, e.g.,
Walker & Lev, 1953). This section focuses on biases of the
BESD SRD when the X and Y variables associated with an
empirically determined rxy have a bivariate normal distribu-
tion; these biases are measured when the assumption of
uniform marginals is realistic (Case 3a) as well as when it is
not realistic (Case 3b).

Case 3a: Bias of BESD SRDs When Median Splits
on X and Y Are Realistic

The uniform marginals assumption of the BESD implies
median splits on both X and Y in the bivariate normal
distribution. Designating above-median scores on X and Y
as X� and Y� and below-median scores as X� and Y�,
respectively, and defining Y� as success, we may define the
actual SRD for the bivariate normal distribution as follows:

SRD � P�Y��X�� � P�Y��X��, (8)

where P(Y��X�) � the success rate given a performance
below the X median and P(Y��X�) � the success rate given
a performance above the X median. In contrast with the
actual SRD, the BESD SRD was defined by Rosenthal and
Rubin (1982) as follows (see Equation 1):

BESD SRDxy � rxy. (9)

Given that the median splits on X and Y are realistic, the bias
of BESD SRD in relation to Pearson rxys for continuous X
and Y scores is therefore the difference between Equations
9 and 8:

Case 3a BESD bias � rxy � �P�Y��X�� � P�Y��X���.

(10)

The calculation of actual SRDs defined in Equation 8
requires determination of volumes under bivariate normal
distributions. Stuart and Ord (1987, p. 482) showed that the
calculation of volumes under bivariate normal distributions
is very complicated except in the case of median splits on
both X and Y. However, given median splits, they noted that
the volume corresponding to (X� � Y�) could be obtained
from the following:

P�X� � Y�� � �1⁄4 � arcsin rxy/2�c�, (11)

where �c � 3.1416 (vs. � � total success rate in Equation
2; Stuart & Ord, 1987, credited Sheppard, 1898, for deriving
Equation 11).

Vargha, Rudas, Delaney, and Maxwell (1996, pp. 268–
269) recently derived an equation relating rxy to � in biva-
riate normal distributions given median splits on X and Y:

� � �2/�c� arcsin �rxy� � .637 arcsin �rxy�. (12)

Equation 12 clearly shows that the � coefficient obtained
with median splits of X and Y variables that have a bivariate
normal distribution will, in general, not be equal to the
correlation of the two continuous variables X and Y (viz.,
rxy); thus, Equation 12 explicitly shows the degree to which
the constancy of correlation assumption of the BESD (in
this case the assumption that � � rxy given median splits on
X and Y) is violated. Equation 11 was used (Equation 12
could also have been used) to determine actual values of the
SRDs (for rxys from 0 to 1.00) that were then used to
calculate the biases of BESD SRDs defined in Equation 10
considering that the assumption of uniform marginals (me-
dian splits) was tenable. These biases have been plotted
against BESD SRDs in Figure 2 (see the Case 3a curve).

What is immediately apparent from Figure 2 (see the
Case 3a curve) is that when the uniform marginals assump-
tion is realistic (i.e., when the median splits yield dichoto-
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mies that make sense in the real world), (a) the BESD SRDs
will consistently overestimate the targeted SRDs, where the
targeted SRDs are the actual SRDs that would result from
the median splits, and (b) the overestimation biases are
generally not negligible.

Case 3b: Biases of BESD SRDs Given a Bivariate
Normal Distribution of X and Y and a Median Split
on Y That Is Not Realistic

When the median split in the distribution of outcome
measures is not realistic, Equations 11 and 12 will not
provide the information needed to determine the biases of
the BESD SRDs. Fortunately, tables from which this infor-
mation can be determined are available: Those provided in
Taylor and Russell (1939) were used in order to generate
actual SRDs for the bivariate normal case for cut scores on
the outcome measure corresponding to success rates (for the
combined groups) ranging from .05 to .95, and these actual
SRDs are depicted in Figure 4 for two values of the Pearson
correlation coefficient rxy (.30 and .70). Several important
facts are illustrated in Figure 4 concerning biases of BESD
SRDs for Case 3b. First, irrespective of whether or not the
median split assumption is tenable, the biases are consis-
tently overestimation biases (assuming that results of the
study were in the predicted direction), suggesting overly
optimistic estimates of efficacy of the treatment. Second,
paralleling findings of Thompson and Schumacker (1997)
and Preece (1983) for Case 1, and findings presented in
relation to Case 2b, the overestimation biases for Case 3b
can be very large for Y splits that differ considerably from

a median split. Third, minimum biases occur for median
splits, although in contrast with Case 2a, these biases (for
Case 3a) are larger and generally not negligible. Fourth, the
size of the bias is predictable from information that is
generally reported (the Pearson r) or that can be calculated
from reported statistics (t ratios, F ratios, etc.) for any cut
score that a researcher considers realistic in defining success
and failure. The major difference between biases for Cases
2b and 3b is that, for the same degree of violation of the
uniform marginals assumption, the bias in Case 3b is always
larger than that in Case 2b.

Case 4: Artificially Dichotomized X and Continuous
Y Variables: Underlying Bivariate Normal

Distribution of X and Y

Recent derivations by Vargha et al. (1996) allow the
measurement of BESD SRD biases in Case 4 in which (a)
the reported correlation is a point-biserial correlation (rpb)
of an artificially dichotomized variable X (median split on
X) and continuous variable Y and (b) the underlying distri-
bution of the continuous variables X and Y is bivariate
normal. Vargha et al. showed (see also Nunnally, 1978) that

rpb � .798�rxy�. (13)

Because the BESD SRD is set equal to the reported rpb of a
study and because the � coefficient for median splits on X
and Y is related to the correlation of the continuous variables
X and Y as indicated in Equation 12, it is clear that (for any
fixed rxy) the bias of the BESD SRD in Case 4 must be as
follows:

Case 4 BESD SRD bias � �.798�rxy� � .637 arcsin�rxy��,

(14)

where rxy is the correlation of the continuous variables
whose distribution is bivariate normal. Equation 14 was
used to generate the curve (see Case 4 curve in Figure 2)
showing biases of the BESD SRD for Case 4.

Vargha et al. (1996) showed that for any rxy below .9075
(which corresponds to rpb � .724 by Equation 13), the �
coefficient obtained with median-split dichotomies on both
X and Y will be smaller than the rpb that would be obtained
with a median-split dichotomy of just one of these variable.
What this implies, in relation to the BESD SRD biases for
Case 4, is that the BESD SRD (which is defined as equal to
the reported rpb by Rosenthal, 1994) will overestimate the
actual � coefficient for median splits on both X and Y
whenever the empirically determined rpb is less than .724. In
general, Figure 2 shows similar biases for Cases 2a and 4:
In both of these cases the BESD SRDs associated with rpbs
overestimate targeted SRDs whenever the reported rpb is in
the range of correlations most commonly reported in meta-
analyses (i.e., �.724 for Case 4 and �.76 for Case 2).

Figure 4. Comparisons of binomial effect size display success
rate differences (BESD SRDs) to actual SRDs for various total
success rates and for two values of Pearson correlations (.30, .70)
given bivariate normal distributions.
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Some Implications of Biases and of Differences
in Biases of BESD SRDs Corresponding

to rpbs and rxys

Figure 2 draws attention to several important facts con-
cerning biases of BESD SRDs in situations involving the
rpbs and rxys when the assumption of uniformity of margin-
als is tenable and when the observed success rates of con-
trasted groups are in the predicted direction. First, BESD
SRD biases associated with rxys are generally larger and at
times much larger than those associated with Cases 2a and
4 rpbs. Second, positive biases (i.e., overestimation of actual
SRDs) are consistently present for BESD SRDs associated
with all values of rxy and are consistently present for BESD
SRDs associated with rpbs that are (a) less than about .76
(i.e., d � 2.34) in Case 2 and (b) less than .724 (i.e., rxy �
.9075) in Case 4. Third, generally small negative biases are
present for BESD SRDs associated with values of rpb (a)
greater than about .76 (i.e., d � 2.34) in Case 2 and (b)
greater than .724 (i.e., rxy � .9075) in Case 4. All of this
information suggests that in real-world applications, the
BESD SRDs for Case 2a, Case 3a, and Case 4 statistics will
virtually always overestimate treatment effects, even when
the uniformity of marginals assumption is tenable.5

Figure 2 also implies that even when the uniformity of
marginals assumption is true, very different SRDs may
correspond to identical values of rxy and rpb (that must yield
the same BESD SRD). For example, if the reported corre-
lation is .80, and therefore the BESD SRD is .80, the actual
SRD will be about .59 (because the bias � �.21) if the
correlation is an rxy and will be about .83 (because the
bias � �.03) if it is a Case 2 rpb. This type of information
raises questions about the validity of inferences about equal-
ity of effect sizes (which have appeared in recent meta-
analyses—e.g., Hiller et al., 1999) based on equal BESD
SRDs corresponding to different types of correlations (rxy

and rpb). Figure 2 clearly shows that equality of these BESD
SRDs does not imply equality of actual SRDs. In fact Figure
2 leads to the paradoxical conclusion that two equal BESD
SRDs, one based on a Case 3a rxy and the other on a Case
2a or 4 rpb, should be interpreted as evidence of a larger
SRD for the rpb because of the larger overestimation bias for
the rxy.

The above conclusion is, of course, based on assumptions
of binormal distributions of Y scores for Case 2a and un-
derlying bivariate normal distributions of X and Y scores for
Cases 3a and 4. These are assumptions under which tests of
significance of rpb and rxy are generally derived (as noted
above) and are assumptions that are usually not questioned
by researchers who use these significance tests. However, it
is not necessarily the case that the binormal and/or bivariate
normal distributional assumptions are true (see Cliff, 1993,
1996; Grissom, 2000). Unfortunately, information about
BESD SRD biases for other distributional assumptions has

apparently been provided for only one case—namely, the
case in which X is a naturally dichotomous variable and Y is
a continuous variable with a “bi-t-distribution.” That is, the
distribution of Y scores associated with each value of X is a
Student’ s t distribution. Rosenthal and Rubin (1982), who
examined this case, indicated that BESD SRDs overesti-
mated targeted SRDs more (or underestimated these SRDs
less) for the binormal distribution model than for the
bi-t-distribution model. The major implication of this infor-
mation, in relation to the biases associated with rxy that were
determined in the present article, is that the statement that
BESD SRDs overestimate targeted SRDs more for rxys than
for rpbs of equal size is even more true for the bi-t-distri-
bution model than it is for the binormal model.

Figures 3 and 4 show that violation of the uniform mar-
ginals assumption generally results in larger biases than
those shown for corresponding values of r in Figure 2. Also,
for the same departure from the uniform Y marginals dis-
tribution, the bias is generally larger for rxy than for rpb.

Alternatives to the BESD: Stochastic Superiority and
Difference Indices

All of the indices reviewed in Huberty’ s (2002) “history
of effect size indices” (p. 227) could be viewed as alterna-
tives to the BESD SRD. Similarly, all of the effect size
indices proposed by earlier critics of the BESD—including
“ relative [risk]” (Crow, 1991, p. 1083) and success rate
ratios (Preece, 1983; Strahan, 1991)—are defensible alter-
natives to the BESD. However, none of these indices are as
similar to the BESD in generality of application, objective,
definition, and simplicity as the “stochastic difference”
(Vargha & Delaney, 2000, p. 104) index (
) recently dis-
cussed in Cliff (1993, 1996) and Vargha and Delaney.

Given Populations 1 and 2 (a dichotomous or dichoto-
mized X variable) the “stochastic difference [
] of Popula-
tions 1 (say, Treatment) and Population 2 (say, Control)
with respect to the dependent variable [Y]” (Vargha &
Delaney, 2000, p. 102) is defined in general (see also Cliff,
1993, 1996) as follows:


 � P�Y1 	 Y2� � P�Y1 � Y2�, (15)

5 The argument that uniformity of marginals and constancy of
correlations could be viewed as postulates (see Case 1) faces an
incompatibility problem in Cases 2a, 4, and especially 3a, in
addition to problems of realism: Splitting the X and/or Y distribu-
tions to satisfy the uniform marginals postulate generally implies
inequality of correlations—that is, the � for the 2 � 2 table will
not equal the rpb (Cases 2a and 4) or the rxy (Case 3a)—and is
therefore incompatible with the constancy of correlations postu-
late, for example, median splits on X and Y, given a Case 3a rxy �
.70, imply � � .49 and not � � .70. Uniformity of marginals
(realistic or not) can therefore clearly imply nonnegligible inequal-
ity of correlations.
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where Y1 and Y2 are independently and randomly drawn
scores from Populations 1 and 2, respectively, and 
 is
defined in terms of the “stochastic superiority” index A (see
Grissom, 1994a, 1996; Vargha & Delaney, 2000, p. 102).
When Y is a continuous variable, the stochastic superiorities
of Population 1 over Population 2, and of Population 2 over
Population 1, are defined, respectively, as follows:

A12 � P�Y1 	 Y2�

and

A21 � P�Y1 � Y2�.

Thus, 
 can also be defined as A12 � A21. For a special case
that would be relevant to Case 2—the binormal model—see
McGraw and Wong (1992) and Grissom (1994a, 1994b) and
for a discussion of the relation of this case to various
diagnostic validity indices, see Hsu (2002a).6 Therefore, 
 is
the difference between (a) the probability that the outcome
measure Y of a randomly drawn person from Population 1
exceeds that of an independently and randomly drawn per-
son from Population 2 and (b) the probability that the
outcome measure Y of a randomly drawn person from
Population 1 is less than that of a randomly drawn person
from Population 2; 
 is a quantification of the statement that
persons exposed to one treatment tend to score higher on an
outcome measure (Y) than persons exposed to another (see
Cliff, 1993).

Both the BESD SRD and 
 are magnitudes of effect
indices that are intended to provide practically useful infor-
mation; both indices focus on contrasts of proportions
(rates, probabilities) to provide this information; both indi-
ces require dichotomous (or dichotomized) X variables;
both indices can be determined from empirical data that
yield values of �, rpb, and rxy (with dichotomization of X in
the case of rxy).

The principal difference between the BESD SRD and the
stochastic difference index is that the parameter 
 generally
provides meaningful information about the magnitudes of
effects in real-world populations, irrespective of the tena-
bility of the BESD’s assumptions of uniformity of X or Y

marginals and of constancy of correlations. In fact 
 does
not even involve any marginal assumptions concerning dis-
tributions of X or Y scores and does not even require
assumptions of interval or ratio scaling of Y scores (see
Cliff, 1993, p. 495): It is even interpretable when the level
of measurement of Y is only ordinal.

The sample estimate d* (note that the asterisk is used to
avoid conflict in notation with Cohen’s d; note also that d*
was called a “dominance statistic” in Cliff, 1993, p. 494) of

, given m persons in one group and n in the other, is (see
Cliff, 1993) as follows:

d* �
#�Y1 	 Y2� � #�Y1 � Y2�

�m��n�
�

#�Y1 	 Y2�

�m��n�

�
#�Y1 � Y2�

�m��n�
, (16)

where

# denotes the number of or number of times) . . . [and] each of
the n [Ys] in one group is compared with each of the m [Ys] in
the other, and counts are made of how many times [the score of
a] member of the first group is higher and how many times it is
lower. (Cliff, 1993, p. 495)

Thus, in Case 1 (the case in which both X and Y are naturally
dichotomous variables—this case is most directly relevant
to comparison of the stochastic difference with the 2 � 2
BESD) there will be (m)(n) pairings of Y scores from the
two groups, (a)(c) yielding (Y1 � Y2) and (b)(d) yielding
(Y1 � Y2) (see Table 1). Thus, d* for Case 1 is as follows:

d* �
�ac � bd�

mn
. (17)

Note that d* is identical (in Case 1) to a form of Kendall’ s
� and to Somer’ s d statistic (see Cliff, 1993; Vargha &
Delaney, 2000). The relation of d* to (a) BESD SRDs, (b)

6 An anonymous reviewer noted that the relative sizes of A12

and A21 can also be defined in terms of an odds ratio (see Agresti,
1989).

Table 1
AZT Data Set (see Thompson & Schumacker, 1997) and Notation for Comparison of the Stochastic Difference Index of Effect Size to
the Actual Success Rate Difference, Binomial Effect Size Display Success Rate Differences, �, and Equation 2

Outcome

Notation Data

Control Treatment Placebo AZT Total

Success (Y2 � 1) b (Y1 � 1) a 121 144 265
Failure (Y2 � 0) c (Y1 � 0) d 16 1 17
Group size m n 137 145 282

Note. a, b, c, d, m, and n are counts or frequencies. Y is an indicator variable: Y2 � 1 indicates success for a control participant, and b � the number of
control participants who were successful; Y1 � 1 indicates success for a treatment participant, and a � the number of treatment participants who were
successful, and so on. N � a � b � c � d � m � n. For the AZT (also known as Retrovir) data set, success equals survival and failure equals death.
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actual SRDs, (c) �s, and (d) Preece’ s (1983) Equation 2 can
now be illustrated for Case 1 using results of an AZT study
(see Table 1) that has been cited in several of Rosenthal’ s
(1990, 1994, 1995a) writings. This study was concerned
with the efficacy of AZT in the treatment of AIDS (see the
right side of Table 1). The number of possible pairings of
AZT and placebo participants is (m)(n) � (145)(137) �
19,865 (because the m AZT participants can be paired with
the n placebo participants in (m)(n) ways. Of these pairings,
(a)(c) � (144)(16) � 2,304 would yield (Y1 � Y2), that is,
better results for the AZT than for the placebo participant in
the pairing, and (b)(d) � (121)(1) � 121 would yield (Y1 �
Y2). Therefore, if we apply Equation 17,

d* � �2,304�/�19,865� � �121�/�19,865� � .1099.

In order to understand the relation of d* to the actual SRD
for the AZT study, we may rewrite Equation 17—because
c � (m � b) and d � (n � a); see Table 1—as follows:

d* �
a�m � b�

mn
�

b�n � a�

mn
�

a

n
�

b

m
. (18)

In other words, for Case 1 studies, d* � observed SRD.
Note that in the AZT study the actual SRD calculated using
Equation 18 is (144/145) � (121/137) � .1099, which is
exactly equal to the stochastic difference calculated using
Equation 17.

It is important to note that because Equation 18 involves
no restrictions on values of a, b, c, d, m, and n (see Table 1),
the stochastic difference estimate (in Case 1 studies) will
always be identical to the actual SRD irrespective of the
marginal distributions of either of the two dichotomous
variables, and that because (unlike the BESD) there is no
recasting of the data, the (BESD’s) assumption of constancy
of correlations across tables is irrelevant. That is, the sto-
chastic difference estimate always coincides with a magni-
tude of effect that is easy to interpret as well as entirely
consistent with the empirically observed SRD.

In contrast, the BESD SRD generally suggests an effect
that is difficult to interpret because it is apparently incon-
sistent with the observed data: For example, the BESD table
of the AZT study (see Rosenthal, 1990) shows an AZT-
caused reduction of 23 percentage points in the death rate,
an SRD that is more than double (viz., .23) the observed
SRD (viz., .1099; see Thompson & Schumacker, 1997). The
“ justification” for the inference (and it must be recognized
as an inference) that AZT would reduce the death rate by 23
percentage points in a real-world population requires tena-
bility of the assumption of uniform marginals (viz., that
there exists a high-risk population with AIDs in which the
death rate of combined AZT and placebo patients would be
.50) and of the assumption of constancy of correlations (that
the � coefficient that would be observed in such a popula-

tion would be equal to that reported in the actual [low risk:
17/282 � .06] study). Both of these assumptions have to be
true if the BESD SRD of 23% is to provide correct infor-
mation about effects of AZT in a real-world population.
Clearly both the stochastic difference index calculated from
the raw data and the observed SRD, whose interpretations
are in no way affected by the lack of realism of these
assumptions, are more defensible indices of the real-world
importance of the effect of AZT than is the BESD SRD.

The relation of the stochastic difference estimate d* to the
� coefficient and to Preece’ s Equation 2 (in Case 1) is
apparent given that � can be expressed (see, e.g., Vargha et
al., 1996), using the notation of Table 1, as follows:

� �

�a�

N

�c�

N
�

�b�

N

�d�

N

��a � b�

N

�c � d�

N

m

N

n

N

.

Given uniform marginals on X, so that (m/N) � (n/N) � .5,
and letting � � (a � b)/N and (1 � �) � (c � d)/N, it is
clear that d* � (4/N2)(ac � bd) and that

� �
1

N2

�ac � bd�

1

2

���1 � ���0.5

� �1/4�d*
2

���1 � ���0.5 , (19)

which, when solved for d*, yields Preece’ s Equation 2
expressed in terms of the stochastic difference estimate:

�d*� � 2����1 � ��� .5. (20)

It is also apparent from Equation 17 that with a uniform
distribution on X, d* � 
 (Cohen’s kappa is arguably the
most popular chance-corrected measure of agreement be-
tween categorical X and Y variables; see Hsu & Field,
2003), so that Equation 2 can also be reexpressed in terms
of Cohen’s kappa:


 � 2����1 � ��� .5. (21)

What becomes apparent from Equations 2, 20, and 21 is
that the constancy of � assumption, which is indispensable
to the definition of the BESD SRD, is equivalent not only to
an assumption of a specific functional relation between the
overall success rate (�) and the actual SRD (illustrated in
Figure 1) but also to an assumption of the same functional
relation (in which � is a constant) between the stochastic
difference index and � and between Cohen’s kappa and �.
Whether the expression on the left of these equations is
actual SRD, stochastic difference, or Cohen’s kappa, no
empirical evidence of tenability of this assumption, has (as
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far as I know) ever been provided by any who have en-
dorsed and/or used the BESD.

The stochastic difference estimate d* calculated from data
of a Case 1 study will (unlike a value of d* obtained from
Equation 20 under the BESD SRD assumption of constancy
of �) generally be an unbiased estimate of 
 (see Cliff,
1993; Vargha & Delaney, 2000). However, the most attrac-
tive property of the stochastic difference estimate d* (see
Equation 16) is not its ability to provide unbiased estimates
of 
 in Case 1 studies in which the outcome variable is
dichotomous, but rather its ability to provide unbiased es-
timates of 
 irrespective of whether the outcome measure is
(a) continuous or discrete or (b) ordinal, interval, or ratio
scaled and also irrespective of (c) the shapes (skewness,
kurtosis, heterogeneity of variances) of the distributions of
the outcome measures (see Cliff, 1993; Vargha & Delaney,
2000). Thus, not only will d* provide realistic and useful
information about magnitudes of effects under ordinary
assumptions of parametric significance tests (see, e.g.,
McGraw & Wong, 1992), as in Cases 2, 3, and 4 (above),
but it will also provide realistic and useful information
about magnitudes of effects in the absence of any of these
assumptions (see Cliff, 1993, 1996; Grissom & Kim, 2001;
Vargha & Delaney, 2000). Another advantage of the sto-
chastic superiority and stochastic difference indices over the
BESD SRD is the recent development of easily calculated
point and interval estimates and hypothesis tests for 
 and A
parameters (see Brunner & Munzel, 2000; Cliff, 1996;
Delaney & Vargha, 2002; Vargha & Delaney, 2000). How-
ever, certain limitations of the stochastic difference and
stochastic superiority indices should be noted (see also
Grissom & Kim, 2001): (a) the calculation of these indices
is slightly (see Grissom, 1994b, for details) more compli-
cated than the calculation of BESD SRDs (for relevant
software, see Wilcox, 1997, 2003); (b) with a continuous
outcome measure the calculation of these indices requires
access to the raw data (unless certain distributional assump-
tions are tenable; see, e.g., McGraw & Wong, 1992); (c)
although calculations of these indices can be made from
values of some nonparametric statistics (e.g., Mann–Whit-
ney–Wilcoxon statistics; see Vargha & Delaney, 2000; Wil-
cox, 1997, 2003), these have rarely been reported in pub-
lished studies; and (d) algorithms for calculation of d* have
not yet been incorporated in the most popular statistical
software packages. These limitations should be recognized
as problems of implementation rather than problems of
interpretation. Nevertheless, they are not negligible prob-
lems, especially for those using these indices in
meta-analyses.

Conclusions

The first conclusion implied by Equations 1–14 and Fig-
ures 1, 2, 3, and 4 is that BESD SRDs tend to overestimate
targeted real-world SRDs in virtually all real-world appli-

cations involving Case 1, Case 2a, Case 2b, Case 3a, Case
3b, and Case 4 parameters. The second conclusion (given
tenability of the uniform marginals assumption of the inde-
pendent variable X and given that results are in the predicted
direction) is that overestimation biases will be present in
almost all of these applications whether or not the uniform
marginals assumption for the dependent variable Y is tena-
ble, but overestimation biases will generally be greater (and
possibly much greater) when the uniform marginals as-
sumption is not tenable than when it is. The third conclusion
is that four major factors determine the sizes of the BESD
SRD overestimation biases: (a) the levels of measurement
(categorical, continuous) of the independent and dependent
variables (e.g., larger overestimation biases are present in
Case 3 rxy studies, involving continuous X and Y variables,
than in Case 2 rpb studies, involving one naturally dichot-
omous and one continuous variable), (b) the degree of
violation of the uniform marginals assumption (e.g., over-
estimation biases generally increase with increases in de-
gree of violation of the uniform marginals’ Y distribution),
(c) the nature of the distributions of the X and Y variables
(e.g., different biases are associated with binormal than with
bivariate normal distributions), and (d) the sizes of the
BESD SRDs (e.g., generally larger overestimation biases
are associated with larger BESD SRDs).

Rosenthal (1990, 2002) has expressed the belief that
effect size estimates other than the BESD SRD have a
“ tendency to underestimate the practical importance of the
effects of behavioral or biomedical interventions,”
(Rosenthal, 2002, p. 844) and that “BESDs [present] a better
picture of the real-world importance of any treatment ef-
fect” (Rosenthal, 2002, p. 844). However, the first two
conclusions drawn in the present article suggest a caveat—
BESD SRDs tend to overestimate magnitudes of effects,
both when the uniform marginals assumption is met and
when it is not met. The third conclusion is at odds with the
current practice (see, e.g., Hiller et al., 1999; Rosenthal,
2002; Svartberg & Stiles, 1991) of making comparative
statements about effect sizes based on BESD SRDs: Any
one or any combination of the four factors (see a, b, c, and
d, described previously) that determine sizes of BESD SRD
biases can clearly invalidate such comparisons.

The stochastic difference and stochastic superiority effect
size indices (Cliff, 1993, 1996; Vargha & Delaney, 2000),
which are applicable to dichotomous-, ordinal-, interval-,
and ratio-scaled response measures, and which are not in-
validated by violations of assumptions of uniform marginals
or of constancy of correlations, provide more realistic indi-
ces of magnitudes of effects in real-world populations than
the BESD SRDs.
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Appendix

Formulas for Cohen’s d, rpb, and for Calculation of Biases of the BESD SRDs in Case 2a

Cohen’s population d, for the binormal model, is defined by the
following formula (adapted from Cohen, 1988, p. 20):

d �
��T � �C�

�wg
,

where �T � the mean of the treatment population, �C � the mean
of the control population, and �wg � the standard deviation of
either population (because within-group standard deviations are
assumed to be equal in the binormal model).

The point-biserial correlation can be calculated using the fol-
lowing formula (adapted from Walker & Lev, 1953):

rpb �
��T � �C�

�total
�NTNC/�N�N � 1��,

where �total � the standard deviation of the combined groups,
NT � the number of treatment participants, NC � the number of
control participants, and N � NT � NC.

Calculation of BESD SRD biases for Case 2a is based on
formulas presented in Rosenthal and Rubin (1982). The rationale
of these formulas was explained as follows:

In order to relate � and �, we establish the following notation. Let X �
�1, �1 indicate group membership, and let E(Y�X) � X�, � � 0, and
Var(Y�X) � 1. Then E(X) � 0, Var(X) � 1, E(Y) � 0, Var(Y) � 1 � �2,
Var(Y*) � 1 [where Y* � �1 if Y � median(Y) and Y* � 1 if Y �
median(Y)], Corr(X, Y) � � � �/[1 � �2].5 or � � �/[1 � �2].5. Also
Corr(X, Y*) � � � 1 � 2T, where T is the area from 0 to � under the
X � �1 group’s Y distribution, or equivalently, the area from �� to 0
under the X � �1 group’s distribution . . . . Thus we can express � as
a function of � by � � 1 � 2T, where T is the area from �/[1 � �2].5

to � under the [standard normal distribution]. (Rosenthal & Rubin,
1982, p. 169)

That is, T � 1 � �(�), where �(�) is the cumulative distribution
function of the standard normal distribution and � � E(Y�X � �1).
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