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Assessing the Reliability of Rating Data

Ratings are any kind of coding (qualitative or quantitative) made concerning attitudes, behaviours, or cognitions. Here, I am concerned with those kinds of ratings made by third-parties of a particular individual’s attitudes, behaviour, or cognitions. These might be from rating scales, observational check-lists, or symptom check-lists etc. The principle aim of reliability analysis is to determine the degree of agreement between raters when using a particular rating scheme. If the reliability is low, then the scheme itself may be at fault, or the raters, or both! I am not going to try and describe all possible kinds of designs and analyses, but only those that might be most common within the mental health setting.

As always, the quantitative properties of the ratings must be considered first. Then, an appropriate statistic might be chosen to summarise the degree of agreement between raters.

First – an important distinction between inter-rater and intra-class correlations.
Interrater correlation (interrater r).

This is where the similarity between ratings is expressed as a correlation coefficient – generally using a Pearson r product-moment type coefficient. In 2x2 tables (for comparison of just 2 raters), it is possible to use a range of measures of agreement, ranging from the phi coefficient through to say Jaccard’s coefficient that excludes all non-occurrences from the calculations). See the DICHOT 3.0 program (downloadable from :

http://www.liv.ac.uk/~pbarrett/programs.htm) for the implementation of several of these coefficients. For example, working from a 2x2 table with cell IDs as :

	
	Rater 1 - Yes
	Rater 1 - No

	Rater 2 - Yes
	A
	B

	Rater 2 - No
	C
	D


We could compute, for example, the following measures of agreement – each of which takes into account the marginal frequencies in specific ways …


[image: image52.png] the Pearson Product Moment r

Yule’s Q (or gamma) = (A*D - B*C)/(A*D + B*C)

The Jaccard,  J = A/(A+B+C)

The G-Index,  G = ((A+D)-(B+C))/N
Bennett’s B index, B = ((A*D-xkon2)/((A+xkon)*(D+xkon))

where:
xkon = (B+C)/2

and the Harms and Ihm (1981) adjustment is made (to guard against A or D frequencies = 0) 

A = A+1, B= B+1, C= C+1, D=D+1
The output from DICHOT 3.0 shows how they compare (the program includes detailed explanations of the logic of each coefficient in its online help – you already have this as a handout).

Let us take the example where we are looking at the amount of agreement between two raters, on an item from the VRAG

Item 1: Lived with both biological parents to age 16
Raw Rating Table
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Here we have a simple 2x2 table layout, which we can enter into DICHOT 3.0 for a complete analysis. 42 patients have been rated, and Rater 1 agrees with Rater 2 on (12 + 16) = 28 patients. On 14, there is disagreement.
DICHOT 3.0 Analysis
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As can be seen, there is considerable variance between the values of the various coefficients. This is mild compared to some differences that may be observed. What is important is that you understand the rationale behind the coefficient being used, and are thus able to interpret its value accordingly. Play around with DICHOT 3.0 to see just how far the values can sometimes vary. For example, take the table below…

	
	Rater 1 - Yes
	Rater 1 - No

	Rater 2 - Yes
	33
	13

	Rater 2 - No
	10
	8
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Where 64 patients are rated on a Yes/No rating variable. They agree on Yes for 33 patients, and on No for 8, the remaining patients are classified differentially by the raters. The results: 

Kappa agreement (Cohen’s Kappa)

Kappa was designed specifically as a measure of agreement between 2 judges, where ratings are categorical, and where a correction for chance agreement is made. This coefficient thus differs from the percent agreement approach adopted by some, because this simple calculation does not take into account what the chance-level agreement between judges would be alone, assuming they both guessed randomly. The formula for kappa computed for any number of ratings categories used by two raters/judges is:
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The expected frequencies are the same as those calculated for the Pearson Chi-SquarePearson_Chi_Square calculation, except we use just the diagonal values (A and D) for both observed and expected frequencies. In contrast to this formula, we might consider use of the JaccardJaccard coefficient , which is another measure of interrater agreement, but one that excludes joint-negatives from its calculation. A useful point is that both kappa and the Jaccard coefficients can be interpreted as % values. Kappa can be interpreted as the % agreement after correcting for chance. The Jaccard coefficient can be interpreted as the % agreement after excluding joint negative pairs. Both coefficients vary between 0 and 1 (or 0 to 100%). DICHOT 3.0 computes this coefficient for 2x2 tables.

If we extend our example to an analysis of the reliability of a 3-point rating, we might have as an example…

	
	Rater 1 - High
	Rater 1 - Med
	Rater 1- Low

	Rater 2 - High
	5
	3
	4

	Rater 2 - Med
	0
	7
	3

	Rater 2 - Low
	0
	0
	3


Here we have 25 patients rated by two raters, using a high-medium-low rating frame. The diagonal expected frequencies generated under a hypothesis of independence are:

	
	Rater 1 - High
	Rater 1 - Med
	Rater 1- Low

	Rater 2 - High
	2.4
	 
	 

	Rater 2 - Med
	 
	4
	 

	Rater 2 - Low
	 
	 
	1.2


Our formula is:
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So…..
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kappa for these data = 0.43.




Intraclass Correlation (Intraclass r)

This coefficient corrects for a fatal flaw with interrater correlation computed using product-moment correlations. That is, interrater r takes no account of the variance between the raters. Remember that product-moment correlations use standardized data, which effectively removes the component of individual rater variability. Essentially, product moment correlations are insensitive to scale, but sensitive to monotonicity relations between data. A simple example to how misleading interrater correlations can be is given below:

Artificial Data file – 10 patients, 3 raters (100 point rating scale)

[image: image35.png]
Computing the interrater r (pearson correlation) between raters 1 and 2, we get 1.00
(even though the ratings differ drastically)

The Intraclass r (Shrout and Fleiss model 2) assumes that each patient is rated by two or more raters. These raters are randomly selected from a larger population of raters. Each rater rates all patients. (In effect, a two-way ANOVA random effects model) is 0.056.
Computing the interrater r (pearson correlation) between raters 1 and 4, we also get 1.00
(now the ratings truly are identical). The Intraclass r for these data is also 1.00
This simple example indicates why the intraclass r 

is always to be preferred to interrater r. 

Before we delve into the computations and compute-file layouts for three types of intraclass correlation (the Shrout and Fleiss models 1, 2, and 3), it is worthwhile to mention two other methods of assessing interrater reliability. For interval-level data, we might use coefficient alpha, and if our ratings are to be considered ordinal, we would use Kendall’s Coefficient of Concordance (I have provided the relevant pages from Siegel and Castellan’s textbook for Kendall’s coefficient). When using the alpha coefficient, we are making a measure of the internal consistency between raters. It is in fact algebraically equivalent to the intraclass correlation coefficient where there is only one rating (dependent) variable (or item) being rated and IF we assume that the judges’ ratings are to be averaged to produce a composite rating. Essentially, this coefficient tells you how reliable that ratings are as a whole (how internally consistent are the judges’ ratings). However, because of this “averaging” of ratings, we reduce the variability of the judges ratings such that when we average all judges ratings, we effectively remove all the error variance for judges.

Take a look at the ANOVA formula below …
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Now, when nj = njav we have…
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which in fact is an alternative formula for coefficient alpha, the measure of internal-consistency that we are familiar with in questionnaire psychometrics.


Out of interest, let’s look at a problem where we compute our interrater reliability using coefficient alpha. The data file looks like: 

[image: image7.png]
Each patient is rated by a judge, on a 1-10 point rating scale. Assuming the data are equal-interval, we compute coefficient alpha as 0.909. In essence, we have treated the judges as “items” in a questionnaire, and our patients are the “observations” on these items. Thus, we are in effect doing an “item analysis”. 

The conventional (one that might look familiar to you!) formula for alpha we are using is:
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[image: image36.png]where 
k = the number of items (judges)

[image: image37.png]   
   = item (judge) variance i of k
               = the total test score variance

and…

[image: image38.png]

[image: image9.wmf]909

.

0

96667

.

44

26667

.

6

66667

.

2

7

.

2

66667

.

2

1

3

4

1

1

2

1

2

=

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

+

+

-

×

=

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

-

×

-

=

å

=

T

k

i

i

S

s

k

k

a


If we compute a 2-way ANOVA on the data file, with Judges as the repeated measures factor, we obtain …

Statistica ANOVA setup screen, with Patients as random effects

[image: image39.png]
And …

[image: image40.png]
Which, if we now use the ANOVA formula for alpha gives us …
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The SPSS 9/10 commands to generate these data are via the Analyze Menu, then General Linear Model, with submenu “Repeated Measures”. Then setup the Raters factor …
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Press Define and make the selections so as to look like this…

[image: image42.png]
Then  … OK … and these are the results …

[image: image43.png]
And …
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Anyway, after that digression, let’s go back to the three main designs that encompass Intraclass Correlation reliability designs.


Here, I am following the treatment outlined in the excellent chapter by Orwin (1996) who reports the seminal work by Shrout and Fleiss (1979). Some of the below can also be easily recast within generalizability theory approaches (see Crocker and Algina (1986) – but this is so confusingly demonstrated that I much prefer the clarity of Orwin and Shrout and Fleiss.

Essentially, there are three models that concern us:

Model 1: Each patient to be rated is rated by a unique rater, with each rater randomly selected from a larger population (a one-way ANOVA random effects model). Specifically, for every patient variable or item to be rated, there is a unique rater. Each rater makes only one rating decision. This model assumes you have a large pool of raters, who are randomly assigned to make one rating per patient per variable. So, for a study in which we rate 10 patients on 5 variables, we would need 50 raters. The ANOVA formula is:
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Model 2: Every patient is rated by each rater. We assume the raters are randomly selected from some population of raters (a two-way random effects model). In essence, each rater rates all patients on all variables. This is the default model that covers most rating situations. For example, for a study in which we rate 10 patients on 5 variables, we would need at least 2 raters in order to assess interrater reliability. Each rater would make (10*5)=50 rating judgements. The ANOVA formula is:
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Model 3: Every patient is rated by each rater, BUT, in contrast to Model 2, we assume the raters are THE population of raters (a two-way, fixed-effects model). In essence, each rater rates all patients on all variables. For example, for a study in which we rate 10 patients on 5 variables, we would select say 2 raters in order to assess interrater reliability. Each rater would make (10*5)=50 rating judgements. However, it is assumed that these are the only two raters who will ever make ratings – no generalizability assumed to other raters. The ANOVA formula is:
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Let us take an example dataset from Orwin (1994) …
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Where we have ratings made on the quality of 25 studies on a 3-point rating scale. 


In Statistica, the ANOVA results for these data … with this setup:

[image: image46.png]
Are: 

[image: image47.png]
If we assumed that each rating for each study was given by a unique rater (random raters), we have Model 1 intraclass r 
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If we assume that two raters (assumed to be a sample from some population of raters) provided ratings of each of the 25 studies, then we have Model 2 intraclass r:
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However, if we assumed that the raters were the only ones we could ever use, essentially the population of raters, then we have Model 3 intraclass r =
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Our three Intraclass r’s are: 

Model 1 = 0.28






Model 2 = 0.35






Model 3 = 0.45

The example on page 5 is actually these data transformed into a table suitable for Kappa – where we assumed the ratings were categorical . The value computed was:






Kappa = 0.43

A Pearson r correlation for the same data =      0.45

Kendall’s W (coefficient of Concordance ….   0.40

assuming ordinal categories 


So, returning to our 4 judges data …

[image: image17.png]
With ANOVA results as:

[image: image48.png]
Our three Intraclass r’s are: 

Model 1 = 0.17






Model 2 = 0.29






Model 3 = 0.71

The Mean Inter-Judge Pearson correlation =       0.76

[image: image49.png]
And now look at how the judges have used their rating scales …

[image: image50.png]

SPSS Windows v.9/10 GUI examples for all three models 

It is instructive to compare the terminology and use of SPSS 9/10 to compute the Intraclass coefficients for Models 1, 2, and 3 above. 

“People Effects” in the SPSS dialogs equate to Patients in my dialog.

“Item Effects” in the SPSS dialogs equate to Raters in my dialog

SPSS can directly compute the Intraclass correlation using the Reliability option from the Scale option on the Analyze main menu.

[image: image18.png]
Using the 6 patient x 4 judges dataset as before …

[image: image19.png]
Model 1: Each patient to be rated is rated by a unique rater, with each rater randomly selected from a larger population (a one-way ANOVA random effects model). Specifically, for every patient variable or item to be rated, there is a unique rater. Each rater makes only one rating decision. This model assumes you have a large pool of raters, who are randomly assigned to make one rating per patient per variable. So, for a study in which we rate 10 patients on 5 variables, we would need 50 raters.


The Reliability analysis screen looks like …

[image: image20.png]
Select the 4 judges as “items” … with Model = Alpha

[image: image51.png][image: image21.png]
Then click the “Statistics” button

[image: image22.png]
Then select Intraclass correlation coefficient and One Way Random Model (note that the “type” box is greyed out)…. 

[image: image23.png]
Then click Continue

[image: image24.png]
Then OK to produce the results ….

[image: image25.png]
Thus Shrout and Fleiss Model 1  =  SPSS One-Way Random model

Model 2: Every patient is rated by each rater. We assume the raters are randomly selected from some population of raters (a two-way random effects model). In essence, each rater rates all patients on all variables. This is the default model that covers most rating situations. For example, for a study in which we rate 10 patients on 5 variables, we would need at least 2 raters in order to assess interrater reliability. Each rater would make (10*5)=50 rating judgements.


Do everything as before until …Then select Intraclass correlation coefficient and TwoWay Random Model, and Type = Absolute Agreement

[image: image26.png]
Continue and OK – for the results …

[image: image27.png]
Thus Shrout and Fleiss Model 2  =  SPSS Two-Way Random model with Absolute Agreement

Model 3: Every patient is rated by each rater, BUT, in contrast to Model 2, we assume the raters are THE population of raters (a two-way, fixed-rater effects model). Each rater rates all patients on all variables. For example, for a study in which we rate 10 patients on 5 variables, we would select say 2 raters in order to assess interrater reliability. Each rater would make (10*5)=50 rating judgements. HOWEVER, it is assumed that these are the only two raters who will ever make ratings – no generalizability is assumed to other raters.
Do everything as before until …Then select Intraclass correlation coefficient and TwoWay Mixed Model, and Type = Consistency

[image: image28.png]
Continue and OK – for the results

[image: image29.png]
Thus Shrout and Fleiss Model 3  =  SPSS Two-Way Mixed Model with Type = Consistency
From the SPSS 10.0 Base Manual – Reliability … ICC section …

[image: image30.png]
“People Effects” in the SPSS dialogs equate to Patients in my dialog.

“Item Effects” in the SPSS dialogs equate to Raters in my dialog

* Note* ..The “between measures” variance referred to in the paragraph above on Type is the 
[image: image31.wmf]r
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 Between Raters component that appears in the denominator of Model 1 and Model 2 calculations – but not Model 3.


What levels of Interrater/Intraclass r are considered acceptable?

Fleiss (1981) and Cicchetti and Sparrow (1981) from the medical fraternity state:

< 0.40 
 = Poor

0.40 – 0.59 = fair

0.60 – 0.74 = good

> 0.74 
 = Excellent

However, given an alpha internal consistency coefficient of < 0.70 is considered unacceptable for applied psychometric reliability indices, and alpha is related to intraclass r, then I can only conclude that the medical fraternity are setting limits far too low. 

Realistically, values above about 0.7-0.8 are acceptable for applied tests. Below this value, and we have real problems using rating data. Remember, the unconditional standard error of measurement for a rating scale is conventionally given by:
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Let’s take some real UK PCL-R data. If our rater reliability is say 0.45, with a test standard deviation of 7, (a maximum score of 40), and a mean score of 17,  and an observed score of  25, we have a SEM of 5.19, 

with a 95% confidence interval of our true score of between 10 and 30.

If we had an interrater reliability of 0.80, with all other factors the same, 

then our SEM is 3.13, 

with a 95% confidence interval of our true score of between 17 and 30.
If we had an interrater reliability of 0.90, with all other factors the same, 

then our SEM is 2.21, 

with a 95% confidence interval of our true score of between 20 and 29.
By the way, the true-score confidence intervals are asymmetric – as per Nunnally (1978). See the TRUESCORE program (available from http://www.liv.ac.uk/~pbarrett/programs.htm)

For the application of confidence intervals in change-score analysis.
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