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1. Why Transform Scores? 
This document explains the various transformations that can be applied to raw test scores 

computed from psychological assessment scales. I’ll be using the terms ‘variable’, “scale score’ or 

simply “score” interchangeably throughout. Psychologists mostly rely upon the additive metric 

properties of integer (whole number) or real-valued numbers (decimal/fractional numbers) 

when working with test scores, irrespective of whether the psychological attribute being 

assessed does indeed vary quantitatively1. So, for this exposition, I'll work within that status-quo 

framework. And, as we shall see below, some transformations or re-expression of raw scores 

purposefully lose metric information in order to gain more informative interpretability of raw 

score magnitudes. 

 

1.1 For Mathematical Purposes 
1.1.1 Averaging multiple scores 

When wanting to produce an average of scores of several different variables or scales, where say 

each variable assessing a facet of Conscientiousness possesses a different score range (say 0-20, 

15-75, 0-40), it’s mistaken to form an average score based upon the scores from each scale 

because the magnitude of each scale score might be the same numerically (say 20), but the 

psychological meaning is vastly different. E.g. 20/20 on the first scale is the maximum possible 

score, 20/75 on the second scale is not only near the minimum score, but also misleading as the 

minimum possible score is 15, not 0, and 20/40 on the third scale is the middle score. An average 

score of 20 (20+20+20)/3) may be possible to compute arithmetically but is quite literally 

meaningless.  The individual is scoring maximum on one scale, near the minimum on another, 

and at the mid-point on the third scale. To produce a valid mean score, the individual scores first 

need to be transformed/re-expressed in a common metric, then averaged. 

 

1.1.2 Correlating or computing the magnitude agreement between scores 

When wishing to correlate scores between two attribute scales (e.g. assessing the monotonic 

relationship between scores on Extraversion and Anxiety scales using a Pearson correlation 

coefficient), the raw magnitude of scores expressed within different ranges on each scale 

confounds the assessment of that monotonicity. Likewise, if looking to index the agreement 

between two vectors of scale scores, where each scale possesses a different magnitude range, 

then any index of agreement will be confounded by the differing score range of each attribute 

scale. In the case of the Pearson correlation coefficient, both variables being correlated will be 

initially standardised. 

                                                           
1 McGrane, J. A., & Maul, A. (2020). The human sciences, models and metrological mythology. 

Measurement (https://doi.org/10.1016/j.measurement.2019.107346 ), 152,107346, 1-9. 
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1.2 For Interpretation Purposes 
1.2.1 Multi-attribute Score Profiles 

When wanting to compare multiple scores on several different psychological attributes, perhaps 

say as a profile of scores for an individual, it is necessary to ensure each attribute possesses the 

same score range. If not, an individual may possess the same magnitude scale score on all 

attributes which, if plotted, would show a straight-line profile across all attributes. But, if those 

attribute ranges are completely different to one another, that plot would be highly misleading 

because as in section 1.1.1 above, whether a numerical score is high or low depends on the 

score-range within which it is expressed. E.g. 20/100 is low, 20/21 is extremely high – yet on a 

raw-score profile plot, both scores would be 20 with no sense of what a maximum or minimum 

score might be for any attribute. 

 

1.2.2 Comparing an individual to a normative group 

In this situation, we wish to compare an individual’s score to how a group of individuals score 

(who are considered normative exemplars of some category or class of people). What we can do 

is re-express/transform a raw score as a percentile score, which informs us as to where the 

individual’s raw score is located within the frequency distribution of scores comprising the 

normative group. Alternatively, we can transform the group scores in other ways to provide a 

common metric for raw score interpretation while also transforming the shape of the observed 

score distribution so as to conform to a normal distribution, with known distribution proportions 

of cases scoring at each raw-score magnitude. 

 

 

Ultimately, whether to transform or not is context-dependent. For example, test publishers such 

as Hogan Assessments rely upon simple norm-group lookup tables, where the empirical 

frequency distribution of the percentage of cases associated with each raw score in that norm-

group is used to interpret the relative magnitude of an individual’s raw score. Others like 

Cognadev transform scores to a common metric and rely upon that metric to convey magnitude 

interpretation. Many use normalised-standardized T, sten, or stanine scores to convey an 

individual’s relative score on a test. 

 

The next three sections provide detailed expositions and examples of each popular 

methodology used by virtually all psychological assessment test publishers, including Cognadev.  
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2. Percentiles 
Basically, no more than simply expressing the percentage of cases who score at or below a raw 

score. Sometimes a person’s raw score is never disclosed, in favour of a statement such as: “this 

person scored at the 90th percentile” or “their percentile rank is 90”. Pretty simple you’d think 

except for the fact that so many authors can’t seem to decide upon whether a percentile 

includes the raw score or not. As the title of one of my earlier technical whitepapers from 2011 

asks: “Percentiles and Percentile Ranks: Confused or What?”;  when reviewing 22 definitions from 

websites and textbooks it is clear that confusion reigns until you consider the assumptions some 

make about scale scores. The whitepaper goes into explicit detail explaining how such 

competing definitions arise, along with the relevant equations, worked examples, and deeper 

consideration of a scale score as a discrete integer magnitude or continuous real-valued number 

(e.g. instead of a discrete magnitude of 2, we might assume 2 is actually the midpoint between a 

continuously varying range of scores between 1.5 and 2.499999999). 
 

Let’s take an example of some test scores … the Eysenck Personality Questionnaire-Revised 

(EPQR) Extraversion scale, with a 0-23 test score range… 
 

Table 1: Frequency distribution of EPQR-E scale scores (UK males reference sample dataset) 

 

Frequency table: LONG_E (EPQR100M)

Scale Score
Count Cumulative

Count
Percent Cumulative

Percent

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Missing

9 9 1.48 1.48
12 21 1.97 3.44
13 34 2.13 5.57
17 51 2.79 8.36
16 67 2.62 10.98
12 79 1.97 12.95
15 94 2.46 15.41
16 110 2.62 18.03
22 132 3.61 21.64
26 158 4.26 25.90
32 190 5.25 31.15
31 221 5.08 36.23
36 257 5.90 42.13
31 288 5.08 47.21
29 317 4.75 51.97
33 350 5.41 57.38
39 389 6.39 63.77
35 424 5.74 69.51
29 453 4.75 74.26
31 484 5.08 79.34
34 518 5.57 84.92
39 557 6.39 91.31
33 590 5.41 96.72
20 610 3.28 100.00
0 610 0.00 100.00
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Let’s assume (in line with the status-quo) that the scale scores are integer ‘mappings’ onto a 

continuously varying quantitative attribute. What would be the 75th percentile score – that score 

below which 75% of the sample score? Well, we can see from the above table that it must be 

between 18 and 19 … as this is where between 74.26% and 79.34% of the sample scores are 

found. Applying the standard formula … 

 

Eq.1 
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Our scores in this case are single values – no range at all. So, our class intervals are in fact the 

scores themselves. E.g. 0-0, 1-1, 2-2, 3-3 etc.  

 

The exact limits however correspond to ±0.5 around each class interval boundary score – the 0, 

1, 2, 3, 4, 5, 6 etc. So, our exact limits are: 

0 = -0.5 to +0.5 

1 = +0.5 to +1.5 

2 = +1.5 to +2.5 

3 = +2.5 to +3.5  

etc. 

 

Let’s re-label and slightly alter Table 1 above to correspond with our notation in the formula … 
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Table 2: Frequency distribution of EPQR-E scale scores (UK males reference sample dataset) - augmented 
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feeding these values into the formula we obtain … 

Frequency table: LONG_E (EPQR100M)

Scale Score
Exact Limits Midpoint f cf Percent Cumulative

Percent

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Missing

-0.5 to 0.5 0 9 9 1.48 1.48
0.5 to 1.5 1 12 21 1.97 3.44
1.5 to 2.5 2 13 34 2.13 5.57
2.5 to 3.5 3 17 51 2.79 8.36
3.5 to 4.5 4 16 67 2.62 10.98
4.5 to 5.5 5 12 79 1.97 12.95
5.5 to 6.5 6 15 94 2.46 15.41
6.5 to 7.5 7 16 110 2.62 18.03
7.5 to 8.5 8 22 132 3.61 21.64
8.5 to 9.5 9 26 158 4.26 25.90

9.5 to 10.5 10 32 190 5.25 31.15
10.5 to 11.5 11 31 221 5.08 36.23
11.5 to 12.5 12 36 257 5.90 42.13
12.5 to 13.5 13 31 288 5.08 47.21
13.5 to 14.5 14 29 317 4.75 51.97
14.5 to 15.5 15 33 350 5.41 57.38
15.5 to 16.5 16 39 389 6.39 63.77
16.5 to 17.5 17 35 424 5.74 69.51
17.5 to 18.5 18 29 453 4.75 74.26
18.5 to 19.5 19 31 484 5.08 79.34
19.5 to 20.5 20 34 518 5.57 84.92
20.5 to 21.5 21 39 557 6.39 91.31
21.5 to 22.5 22 33 590 5.41 96.72
22.5 to 23.5 23 20 610 3.28 100.00

0 610 0.00 100.00
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Or in MathCad: 

 
 

So, the 75th percentile is a score of 18.645. This is the score at which 75% of observations will be 

observed to be below. BUT – the score is unattainable as this is an integer scored test. What we 

actually observe is that 74.26% scores will lie at or below 18, with 79.34% of scores at 19 or 

below. IF we wish to use exact percentiles – then we must accept that our scores are estimates of 

hypothetical real-valued continuous numbers, hence a score of 18.645 is perfectly valid under 

these conditions, and the definition of a percentile is most correctly defined as: 

the value below which P% of the values fall.  

 

 

2.1 Percentile Ranks 
If we decide to transform our raw scores into percentile ranks, reporting these instead of the raw 

score to an individual, how do we do this? 

 

For example, when an individual scores 19 on a test, what do we conclude? Here we need to 

compute the percentile rank of the score – which is just the reverse of computing the score for a 

particular percentile. Now we know the score =19, but need to compute the percentile for it.  

 

The formula is: 
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Eq. 2    

where

percentile rank of score 

the exact lower limit of the interval containing the score 

the total number of scores

the cumulative fr

the

100.0

 
 
 
 

 

i

x

x x

x

x llcf f
wPR
n

PR
ll
n
cf

           
 
 
 




 equency of scores below the interval containing the score 

the frequency of scores in the interval containing 

the width of the class interval

 
 

i

x
f x
w



 

 

So, for a score of 19, the exact percentile rank is: 

 
a score of 19 is at the 76.8th percentile – the score at which 76.8% of scores will be found to be 

below this score. 

 

But, using actual scores means that only certain % values can be provided – based upon the 

exact number of frequencies observed for each score. So, there can be no 75th percentile for our 

observed frequency distribution – only a 74.26th or 79.34th percentile. So … 
 

❶ If you want to assign exact percentile ranks to scores, then you must use the formulae above 

and assume each integer score is actually a point-estimate from an interval of possible scores. 

Here, the definition of a percentile is the value below which P% of the values fall.  
 

❷ Alternatively, if you simply prefer to state the frequency of people who score at or below an 

observed test score, then you use the actual frequencies of scores in your normative data. Here, 

the percentile is the point at or below which a given percentage of scores is observed. 

 

The first statement assumes that scores are theoretically continuous but can only be observed as 

integers; the second assumes scores are simply discrete integers.   
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3. Standardisation 
This refers specifically to transforming raw test scores into what’s called ‘standard scores or z-

scores’. A routine statistical procedure which retains the essential magnitude variation in a scale, 

while re-re-expressing scores in a common metric. In this way, any standard score can be 

expressed in a convenient metric, as the equation below shows: 
 

Eq. 3 
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This is the transformation applied (standardisation of each variable’s observations) when 

computing a Pearson correlation. The advantage to such a transformation is that variables with 

different measurement ranges can be transformed into a common metric, prior to using, 

comparing, or correlating their magnitudes. 

 

In some Cognadev assessments for example, the raw scores for final reported variables have 

vastly different score ranges. To ensure interpretability, we create a representative norm-group 

with these raw scores, then transform these raw scores to T-scores. Subsequent respondent raw-

scores are then identified in a look-up table created by the norm-group score transformation. 

That is, a new raw score is identified in the normative group raw-to-T-score-table, which 

provides its T-score equivalent.  

 

However, it is important to note that the distribution ‘shape’ of the raw scores is not affected by 

the transformation except where the compression or expansion of the variability of scores is 

concerned.  For example, a sample of hypothetical raw scores for two variables have been 

generated below, differing in their magnitudes and variabilities. Both are transformed to T-
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scores. The histograms and descriptive statistics show the effect of the standardizing 

transformation. 

 

Variable 1: Image Manipulation Skill 

Table 3: Raw and T-scores for variable Image Manipulation 

 
 

Figure 1: Histograms of Raw and T-scores for Image Manipulation 

Histogram: Image Manipulation (IM) Raw Scores
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Histogram: Image Manipulation (IM) T-scores 
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Descriptive Statistics (Tech Report #15, sample data, n=5000 cases, moderate beta, 8-Jan-20)

Variable Valid N Mean Median Minimum Maximum Std.Dev.
Image Manipulation (IM)
T-score (IM)

5000 712.81 732 134.0 997.0 159.84
5000 50.00 51 13.8 67.8 10.00
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Variable 2: No. of Mistakes 

Table 4: Raw and T-scores for variable No. of Mistakes 

 
 

Figure 2: Histograms of Raw and T-scores for No. of Mistakes 

Histogram: No. of Mistakes (NM) Raw Scores
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Histogram: No. of Mistakes T-scores (NM) T-scores
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The distribution shape is maintained for both variables … although the variability is expanded for 

Variable 2 as a result of the T-score transformation. 

Descriptive Statistics (Tech Report #15, sample data, n=5000 cases, J-shaped beta, 8-Jan-20)

Variable Valid N Mean Median Minimum Maximum Std.Dev.
No. of mistakes (NM)
T-scores (NM)

5000 8.87 7.00 1.00 42.00 7.51
5000 50.00 47.51 39.52 94.14 10.00
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4. Normalisation 
With respect to data transformations, there are two distinct meanings to this word.  

 

There is the normalisation routinely undertaken in applications which transform data as a 

function of some reference magnitude (e.g. in orthogonal or parallel coordinate vector 

comparisons, sometimes it is useful to transform all vector magnitudes into a common metric 

varying between 0 and 1).  Given this kind of ‘normalisation’ is solely concerned with re-

expressing data in a common metric, I refer to this transformation as a “common-metric” 

transformation, in order to keep its meaning distinct from the second ‘normalising’ 

transformation. 

 

The second meaning is that associated with a unit-normal distribution. That is, we transform 

data magnitudes such that the new magnitudes are more normally distributed, in line with the 

expected proportions observed for each magnitude within a perfect normal distribution. The 

data are first standardized then ‘normalized’, hence referred to as normalised-standardized 

scores. 

 

4.1 Common-Metric Transformation (CM) 
When wishing to display and compare data from variables whose measurement metric is not the 

same, it is useful to rescale each variable's values into a convenient common metric. This is 

especially the case when displaying data with different ranges in multiple line-graphs and 

scatterplots, and for comparing multiple variables with coefficients such as the Gower 

agreement index. 

  

Also, with specific regard to the Gower and other relative magnitude agreement indices, using 

two variable vectors with differing minimum and maximum values produces incorrect 

agreement measures because the relative change in one variable vector is not equal to the 

relative change in another (by reason of the inequality which exists between the respective 

minima and maxima). 

  

Unlike conventional standardization, which transforms a variable's values by subtracting each 

observed value from the mean of all observed values and dividing this difference by the 

standard deviation of the values, the rescaling implemented here preserves the relativity 

between each variables' observations while rescaling the magnitudes into a common metric. CM 

normalisation is simply a linear transformation of raw scores into a new metric, preserving exact 

magnitude relations and raw-score variability.  
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The formula is: 

 

Eq.4 
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A worked example 

 
 

 

 

4.1.1 A comparative example of T-score vs CM-score transformations 
For a CPP T-attribute External Focus, the descriptive statistics for the raw sum-scores, the T-score 

transformed scores, and CM scores, are: 

 

Table 5: Descriptive statistics for raw, T, and CM scores; CPP attribute External Focus 

 
 

Descriptive Statistics (T-01 External Focus Data.sta)
Variable Valid N Mean Median Minimum Maximum Std.Dev. Skewness
Raw Rule Score
T-Score
CM-Score

101063 210.31 210 0 400 95.835 -0.003
101063 50.00 50 28 70 10.017 -0.009
101063 52.58 52 0 100 23.968 -0.003
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With T and CM-score histogram: 

 

Figure 3: Standardized T-scores and CM score histograms  

Standardized T-scores vs Common Metric (CM) scores
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Table 6: Pearson Correlations between raw, T, and CM scores; CPP attribute External Focus 

 
 

 

If we look at another variable, comparing standardized to CM scores, we can see the 

transformation effect from a different perspective. Table 7 shows the descriptive statistics for the 

raw, z, T-, and CM-scores. 
 

Table 7: Descriptive statistics for raw, z, T, and CM scores for a rule variable 

 
 

Note the difference in means and especially the highlighted standard deviations between the 

standardized T-scores and CM-scores. Figure 4 shows the frequency distribution the raw scores. 

Correlations (T-01 External Focus Data.sta), N=101063
Variable Raw Rule Score T-Score CM-Score
Raw Rule Score
T-Score
CM-Score

1.0000 0.9996 0.9999
0.9996 1.0000 0.9995
0.9999 0.9995 1.0000

Descriptive Statistics (T-12 Metacognitive monitoring.sta)
Variable Valid N Mean Median Minimum Maximum Std.Dev. Skewness
Raw Rule Score
z-score
T-score
CM-Score

101063 421.13 435.00 57.000 700.00 130.422 -0.308
101063 -0.00 0.11 -2.792 2.14 1.000 -0.308
101063 50.00 51.00 22.000 71.00 10.003 -0.309
101063 60.16 62.00 8.000 100.00 18.636 -0.307

Note how the T-scores 

compress the scores into a 

much smaller range.  

 

Monotonically, they are 

virtually equivalent, as 

seen in Table 6. But, as 

Table 5 above shows,  in 

terms of actual magnitude 

range, they are very 

different.  
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 Figure 4: A raw score histogram 

Histogram of Raw Rule Score
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Figure 5: The standardized T and SM Transformed score histograms 

Histogram of multiple variables
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The CM transformation preserves the exact shape and spread of raw sum scores, but now within 

a 0-100 metric. Whereas the T-score transformation compresses the scores into a narrower 

range. Monotonically the scores are all equivalent to one another, as shown in Table 8. 
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Table 8: Pearson Correlations between raw, T, and CM scores; CPP attribute External Focus 

 
 

 

4.2 Normalised-Standardized Scores (NST) 
Normalized scores are specifically constructed to provide proportions of cases at each score 

level according to the expected frequencies of a perfect normal distribution. The mean and 

standard deviation of the raw data are the key parameters which enable standard scores and the 

normalization to be created. In this way, one can refer to a suitable-metric transformed integer 

score, with a very good idea just how many people obtained that score. Obviously, this can still 

end up with some inaccuracies where observed score ranges have big gaps between them, and 

frequencies are not spread very well across the whole score range. In other words, it's not a 

magic bullet to fix up badly skewed distributions of scores! 

 

If we refer to Eq.3 again: 

 
... ...

 

then we can apply a

and re-express our standard scores 
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Then not only do we standardize scores as explained in section 3, but we now transform them  

according to how many such scores would be expected to be found at each transformed score, 

or at each raw-score magnitude. Figure 6 provides the expected normal distribution percentage 

of cases, relative to the magnitudes of each kind of transformed score. 

 

Correlations (T-12 Metacognitive monitoring.sta)
Marked correlations are significant at p < .05000
N=101063 (Casewise deletion of missing data)

Variable Raw Rule Score T-score CM-Score
Raw Rule Score
T-score
CM-Score

1.0000 0.9996 0.9999
0.9996 1.0000 0.9995
0.9999 0.9995 1.0000
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Figure 6: The normal distribution expected frequencies 

 
 

The 7-steps for computing the Normalised-standard (NST) scores 

1.  Work out the cumulative proportion (CP) for each raw score – doing steps 2-5 below … 

2. Prepare a frequency distribution of the scores 

3. Compute the Cumulative Frequency (CF) per score, where CF = the sum of the frequencies 

observed up to and including the "current score". 

4. Compute the CF to the mid-point of each score interval by adding the CF at a score to half the 

numbers of cases observed at the same score. 

5. Divide the mid-point CF (from #4) by the total number of cases (N). This is the CP (Cumulative 

proportion). 

6. Obtain the theoretical Normal Distribution z-score for each CP (the inverse normal 

calculation) – here we find the z-score from a given proportion of the area under the curve. 

7. Use the conventional transformation formula to convert the z-score into a sten, stanine,  or T-

score. 

 

Clearly, this is computationally intensive. Fortunately, anyone interested in producing NST scores 

and the raw_score-to-NST-lookup  table for one or more scales and transformed score types can 

download my free software to do this (Stanscore 5).  
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A hypothetical variable using 25k cases: the score differences 

 

Table 9: The frequency distributions of some transformed scores. grouped into 10 classes: 

(a) CM scores 

 
 

(b) Standardised T-scores 

 
 

(c) Normalised-Standardised T-scores 

 

Frequency table: CM Score (A_16 - Coherence CM Scores, 25k dataset)

  From       To

Count Cumulative
Count

Percent Cumulative
Percent

0       <=x<10
10      <=x<20
20      <=x<30
30      <=x<40
40      <=x<50
50      <=x<60
60      <=x<70
70      <=x<80

0 0 0.00 0.00
2 2 0.01 0.01
7 9 0.03 0.04

3096 3105 12.38 12.42
9188 12293 36.75 49.17

12569 24862 50.28 99.45
138 25000 0.55 100.00

0 25000 0.00 100.00

Frequency table: Standardised T-score (A_16 - Coherence CM Scores, 25k dataset)

  From       To

Count Cumulative
Count

Percent Cumulative
Percent

0       <=x<10
10      <=x<20
20      <=x<30
30      <=x<40
40      <=x<50
50      <=x<60
60      <=x<70
70      <=x<80
80      <=x<90
90      <=x<100

2 2 0.01 0.01
6 8 0.02 0.03

442 450 1.77 1.80
3204 3654 12.82 14.62
6295 9949 25.18 39.80

12587 22536 50.35 90.15
2324 24860 9.30 99.45
125 24985 0.50 99.95
13 24998 0.05 100.00
0 24998 0.00 100.00

Frequency table: Normalised-Standard T-score - Discrete (A_16 - Coherence CM Scores, 25k dataset)

  From       To

Count Cumulative
Count

Percent Cumulative
Percent

0       <=x<10
10      <=x<20
20      <=x<30
30      <=x<40
40      <=x<50
50      <=x<60
60      <=x<70
70      <=x<80
80      <=x<90
90      <=x<100

0 0 0.00 0.00
12 12 0.05 0.05

440 452 1.76 1.81
3204 3656 12.82 14.62
6995 10651 27.98 42.60
8625 19276 34.50 77.10
4745 24021 18.98 96.08
913 24934 3.65 99.74
62 24996 0.25 99.98
4 25000 0.02 100.00
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Figure 7: The score histograms for the transformed “Coherence” scores 
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Histogram: Standardised T-score
 Expected Normal
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Histogram: Normalised-Standard T-score - Discrete
 Expected Normal
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Moving from CM to 

Normalised-Standardised T-

scores, we can see how the 

normalisation procedure ‘forces’ 

scores to be distributed more 

‘normally’.  

 

The CM scores show the actual 

distribution shape. 

 

Note also that the CM scores 

possess much less variability 

than standardised T-scores. 

Descriptive Statistics (A_16 - Coherence CM Scores, 25k dataset)

Variable Std.Dev.

CM Score
Standardised T-score
Normalised-Standard T-score - Discrete

5.78
10.04
10.26
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Another hypothetical variable – more variability, using 25k cases 

Figure 8: The score histograms for more variable attribute scores 
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Histogram: Standardised T-score
 Expected Normal
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Histogram: Normalised-Standard T-score - Discrete
 Expected Normal
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Moving from CM to Normalised-

Standardised T-scores, we can see how 

the normalisation procedure ‘forces’ 

scores to be distributed more 

‘normally’.  

 

The CM scores show the actual 

distribution shape. 

 

Note also that the CM scores possess 

much more variability than T-scores.  

 

But this is an exceptional hypothetical 

variable whose CM scores are more 

variable than the standardised t-

scores. 

 

Descriptive Statistics (A_9 - Comparative Spontaneity Scores, 25k dataset)

Variable Std.Dev.

CM Score
Standardised T-score
Normalised-Standard T-score - Discrete

17.16
9.99
9.95


