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1 Introduction

This program originally started life as a test routine which I was using to explore the Gower index

alongside some other coefficients. But, in order to make it "usable" by others who might wish to

look at their own data using the Gower index, I added a more user-friendly and informative

interface - and some useful options. 

The program only works with two columns of numbers - providing 7 coefficients computed from

such 'bivariate" data. If you need a matrix of such values, for each of these coefficients, you would

need to use the IRR-1 program (P.B. 22nd August, 2012: still on my 'to do' list I'm afraid ). 

* Version 1.0a takes data from an Excel .xls or .xlsx file as input, displaying the data and calculation

results in two Excel-style grids, which can be printed or copied through the clipboard into Excel. 

It also displays a scatterplot of the data as well as a case-order plot. The latter plot is for the kinds

of data which are ordered sequentially; for example where two variables or attributes are sampled

over sequential time-points. 

If you want a significance test for the Gower, use the Bootstrap program which is available for

download from my website. This computes the empirical sampling distribution for a Gower

coefficient, taking into account the maximum possible discrepancy range, the kind of data (integer

or reals) and the number of observations over which a Gower has been computed. It also allows you

to test the significance of a difference between two Gowers, by constructing the empirical sampling

distribution of the difference between two Gower coefficients, given their respective data

characteristics (sample size, number type, and maximum possible discrepancy of observations in

each sample). 

It's an interesting coefficient - rather useful when combined with a measure of monotonicity, the

Pearson Correlation.

The best way to familiarize yourself with the program is to look at accompanying video help

available at the webpage from which you downloaded this software.

* This was released on 14th August, 2012 .. incorporating a new Excel component for reading Excel

.xls and .xlsx files.

--------------------------------------------------------------------
Paul Barrett, (paul@pbarrett.net)

http://www.pbarrett.net/software.html
http://www.pbarrett.net/gower/gower.html
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2 Datafile format

Data is input into the program via Excel files only; just two columns of data in a file, with the first

line containing the variable/vector names. The program accepts Excel .xls or .xlsx files.

Missing data are expected to be blank cells (either with nothing at all in a cell or just one space

character). If you use -9999 or something like that, the values will be read as observations. The

missing-data count is provided in the results output, as a double-check for you.

The example file which comes with the program (Gower test file - EEG and Temperature, N=144

obs.xls) is a fragment of common-metric EEG and Temperature data, acquired sequentially over 144

time-points from an animal within a physiology experiment. The EEG data were actually measured

in microvolts, with temperature in degree Celsius,  but for the sake of graphical display, and for the

correct calculation of relative discrepancy, the data were expressed within a common 0-1 metric.

The file looks like:

two columns of data, 1st row contains the vector/variable/attribute names.
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3 Running the program

The best way to familiarize yourself with the program is to look at accompanying video help

available at the webpage from which you downloaded this software.

However, a quick overview follows below .. 

When you click on the program icon, all you can do is either open a file or look at this help.

So, you open the file. The program has a "memory". The first time you search for and open a file, the

program remembers where it was so that next time you run the program (or search for a new input

file), it goes to the most recent subdirectory you used previously.

OK - now you have your file .. 

http://www.pbarrett.net/gower/gower.html


Running the program 9

© 2021 Paul Barrett

There is a lot to take in here ...

The Gower (and DSEs) both express discrepancy as relative to the maximum possible discrepancy

which could be observed with these two attributes. Now, that can either be the range of values

within the actual vectors of data at hand, or a "could actually have been these values". 

For example, if using a rating scale which varies between 0 and 10, two raters who rate 20 people 

(the two vectors of data, one per rater)  might only have used values between 6 and 10, with Rater 1

using values between 8 and 10, and Rater 2, 6 and 8. So, the data-based minimum and maximum

values would be 8 and 10 respectively for Rater 1's data, and 6 and 8 for Rater 2.

The program computes the minima and maxima for each input vector of data and displays this

initially (as the above image shows).
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In the case of our hypothetical rata data, knowing that ratings could have been given between 0 and

10, we would change the minimum and maximum for vector 1 to 0 and 10 respectively. 

This is fine when both vectors use a common range of measurement .

In the case of the common-metric scaled EEG and Temperature data example above, all we know is

that the minimum and maximum possible values which could be observed are between 0 and 1, so

we would set the minimum and maximum for vector 1 accordingly. This assumes that Vector 2's

values also range between these values.

Rather than go into pages of written description and "nuance" - just go look at the relevant AV

helpfile on this issue.  

VERY IMPORTANT! What if Vector 2 data is on a completely different measurement

scale from Vector 1?
Well, look at this file ...

http://www.pbarrett.net/gower/gower.html
http://www.pbarrett.net/gower/gower.html
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Here we see that Vector 1 values range between 1 and 6, while Vector ranges between 50 and 600. 

Using two variable vectors with differing minimum and maximum values produces incorrect

agreement measures .. because the relative change in one variable vector is not equal to the

relative change in another (because of the inequality which exists between the minima and

maxima).

In short,  the Gower (and DSEs, and KSD coefficients - i.e. all agreement coefficients)  must be

computed using attribute/variable vectors which share exactly the same measurement range.

The program advises you about this as you can see above ... clearly in this case, the metric ranges

are unequal. So .. we need to rescale the data.

Rescaling the Data
We now click on the option "Yes" in the box asking the question "Do the data need rescaling?"

What we see is this ...
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We could use Vector 1 as the "reference" vector. That is, it's minimum and maximum values will be

used to rescale Vector 2s values into the same range as Vector 1. 

Whatever you type in for Vector 1 (if you need to) will be used to set the common-metric range for

both Vectors. 

However, also check Vector 2 now .. as you need to make sure that the POSSIBLE minimum and

maximum values are used for Vector 2, not just the ones you see on display - UNLESS these really

are the possible minimum and maximum values for that Vector variable.

Alternatively, we might choose to use Vector 2 as the "reference" vector. That is, it's minimum and

maximum values will be used to rescale Vector 1s values into the same range as Vector 2. 

Whatever you type in for Vector 2 (if you need to) will be used to set the common-metric range for

both Vectors. 

However, also check Vector 1 now .. as you need to make sure that the POSSIBLE minimum and

maximum values are used for Vector 1, not just the ones you see on display - UNLESS these really

are the possible minimum and maximum values for that Vector variable.
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The  relevant AV helpfile on this issue helps explain things even further.  This is tricky!

Anyway, let's do it both ways for now .. first we rescale Vector 2s values into the same metric as

Variable Vector 1. We know Vector 1s possible minimum and maximum values are indeed 1 to 6. So

no change there. But, we need to change Vector 2's minimum to 0, because these measurements

could have varied between 0 and 600; we just happened to observe a minimum value of 50. 

The screen looks like:

click on the Go button and we see ..

http://www.pbarrett.net/gower/gower.html
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The Results Grid help section defines the various entries.

Here we are more concerned with the two  columns in blue text in the data grid, "Scaled Col #1"

and "Scaled Col #2". These show that Vector 1 (var 1) is not rescaled at all (as it is the reference

vector), but Vector 2's data (var 2) is now rescaled into the metric of Vector 1. Note the maximum

value for Vector 2 (600) is now (6) - which is the maximum value for Vector 1.  

Now we will rescale Vector 1s values into the same metric as Variable Vector 2. We know Vector 2s

possible minimum and maximum values are 0 to 600, so we make that change. But, we there is no

need to need to change Vector 1's minimum or maximum as these actually are the possible values

which we happened to observe in the input data.

What we do to run this analysis is click on Open Excel File menu button, open the file again, and set

the new constraints ... (don't forget to set Vector 2s minimum to 0):

The screen looks like:
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Clicking on the Go button ...
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The results for all coefficients are the same (Gower, DSE-s, KSD etc.) because the rescaling is linear-

but you can see the data are now expressed in a common metric defined by Vector 2s minimum and

maximum, ranging between 0 and 600.

You can print the results grid, and look at/print  the scatterplot of the data. Just click on the relevant

tabs or menu options. Again, checkout one of the video helpfiles available at the webpage from

which you downloaded this software.

The Results Grid help section defines the various entries.

--------------------------------------------------------------------
Paul Barrett, (paul@pbarrett.net)

http://www.pbarrett.net/gower/gower.html
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4 The Results Grid

Here I define the entries in the results grid ...

The best way to familiarize yourself with the program is to look at accompanying video help

available at the webpage from which you downloaded this software.

I'll use the file: test data - 640 cases, 2-raters, range (0-50).xls

The data is taken from 2 raters who used a 0-50 range behavioral rating scale, rating 640 job

applicants over a whole year, in an assessment center. What we want to do is evaluate the interrater

reliability of these raters over the whole year. The cases are "block-ordered" over time. That is, cases

were entered into the file in blocks, corresponding to each months' throughput of candidates in the

assessment center. So, the data do correspond to a kind of case-ordering, which might be useful for

a case-order plot.

Inputting the data file ...

http://www.pbarrett.net/gower/gower.html
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the first thing we have to do is change the range to the maximum possible rating range which could

have been used by the raters (0 to 50) ... Given both vectors use the same-metric rating scale, we just

change the minimum value from 2 to 0 - without any rescaling ... as shown below ...

The results are:
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Let's take each area in turn ..

These are the Pearson and Gower coefficients respectively. Note that if you only used/interpreted a

Pearson correlation to measure rater reliability, you'd conclude there was none. Yet the Gower

indicates 87% agreement. What these two coefficients are telling you is that the raters rate similarly

to one another, but their ratings are not monotonically related (they don't co-vary).

This is the double-scaled euclidean distance, expressed as a similarity coefficent (DSE-s). Slightly

lower than the Gower, but sill pretty high.
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The kernel smoothed distance coefficients , expressed as similarities. The top one uses a much

sharper criterion to express similarity than bottom one. Remember, the KSD-s coefficent "shapes

"discrepancy" - by increasing the magnitude of a linear discrepancy non-linearly, so that a larger

discrepancies are penalized more than smaller ones.

The intraclass coefficient, ICC-1, ICC-2, ICC-3 for Models 1, 2, and 3. Normally the chosen coefficient

for rater reliability. You would conclude there  is none if you relied upon these as your indicators.

But they are totally misleading. I really can't stress enough that the use of the Pearson or ICC for any

kind of reliability work is really, really inadvisable (including test-retest).

These are just "information" indices associated with the analysis - the actual minimum and

maximum vales for each input vector are presented along with the minimum and maximum used for

the analysis (reflecting the change we made).

Note also the "status" report about rescaling displayed over the top of the results grid ...

this will remind you whether or not you requested scaling, and which variable range is taken as the

"referent".
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These are some diagnostics associated with the Kernel smoothed distance coefficient and the DSE-s

and Gower. The KSD values are the size of the smoothing standard deviation parameter. The

discrepancies are raw (absolute) and squared values, without being scaled by the maximum

possible discrepancy. See the help section entitled Relative v Simple Discrepancy. 

--------------------------------------------------------------------
Paul Barrett, (paul@pbarrett.net)
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5 The data plots

Two kinds of data plot are provided with this routine, a straightforward scatterplot of the two vector

variables, and a case-order plot of the two.

The scatterplot plots the data given their respective values on both variables.

The case-order plot presents the data  in "case-order". That is, it plots both vector values in

sequential case order, each pair of values plotted against case # in the file. This is useful where the

case order is systematic (as in observations taken over time for example). 

The plot is only useful when the variables are expressed in a common-metric, because then you get

to see the shape/trends within the data without the axis scale distorting the visual perception (where

the same scale has to account for completely different metric EEG and Temperature values).

If we look at the EEG and Temperature file, where these pairs of values were observed over time,

and the order of cases in the file is by time-point, we see ..
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You can see 'by eye' the agreement between EEG and Temperature .. the Gower is 0.91 for these

data.
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6 The Coefficients

In terms of "classes" of coefficents, you think of them in terms of their capacity to estimate

agreement vs monotonicity.

The Pearson is an estimate of monotonicity, not magnitude agreement. Likewise  ICC-1 and ICC-3. 

ICC-2 tends to show more sensitivity to magnitude but it's not always the case.

In short, ICCs really are not very useful IF you want to make a "clean" assessment of monotonicity

and magnitude agreement. ICC-2 just confounds the two.

For example, look at the two vectors of rating data below:

The rating range is between 1 and 9. The two raters are giving completely discrepant ratings - you

really couldn't get much more disagreement! Yet. look at the coefficients:

Pearson r =.54
icc1 = -.97
icc2 = .00
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icc3 = .54
Gower = .10
DSEs = .10
KSDs = .00

You might be tempted into thinking ICC-2 is working just fine ... don't. Look at the next graph below

..

The rating range is between 1 and 9. Our two raters are giving ratings in almost perfect agreement

with one another - you really couldn't get much more agreement! Yet. look at the coefficients:

Pearson r =.08
icc1 = -.02
icc2 = .07
icc3 = .08
Gow = .94
DSEs = .91
KSDs = .88

If you want  a measure of monotonicity (how well observations co-vary with one another), use the

Pearson correlation. It's perfect for this.
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If you want a measure of magnitude agreement (how well the actual magnitudes of observation

agree with one another, irrespective of whether they "co-vary"), use the DSE-s, KSD-s, or Gower ... 

An investigator needs both sources of information to come to a complete decision about the

association between variables. 

--------------------------------------------------------------------
Paul Barrett, (paul@pbarrett.net

6.1 Pearson monotonicity

The formula for the Pearson correlation coefficient is:

The coefficient varies between +1.0 and -1.0, with +1.0 indicating maximum similarity, -1.0 =

maximum inverse similarity, and 0.0 indicating no relationship whatsoever. The Pearson correlation

indexes this relationship by first transforming the raw data, standardizing each variable by its



Gower program help file v1.0a30

© 2021 Paul Barrett

respective mean and standard deviation, then computing the covariance between the two

transformed variables. Absolute magnitude information is lost in order to enable this scale-free

computation of relationship (monotonicity).

6.2 ICC-1 (intraclass)

Normally applied to ratings as in an interrater reliability estimation procedure; each person/case to

be rated is rated by a unique rater, with each rater randomly selected from a larger population (a

one-way ANOVA random effects model). Specifically, for every case or item to be rated, there is a

unique rater. Each rater makes only one rating decision. This model assumes you have a large pool

of raters, who are randomly assigned to make one rating per case per variable. So, for a study in

which we rate 10 cases on 5 variables, we would need 50 raters. The ANOVA formula is:

The formula can be applied to Vector data, where the vectors of data are considered random

samples from some hypothetical population, with the vector attributes also independently sampled.

The Intraclass coefficients vary between 0 and +1 (where 0 = no relationship/reliability at all). They

can under certain circumstances assume negative values but this is very rare with anything but

random rating data.



The Coefficients 31

© 2021 Paul Barrett

6.3 ICC-2 (intraclass)

Normally applied to ratings as in an interrater reliability estimation procedure; every case is rated by

each rater. We assume the raters are randomly selected from some population of raters (a two-way

random effects model). In essence, each rater rates all cases on all variables. This is the default

model that covers most rating situations. For example, for a study in which we rate 10 cases on 5

variables, we would need at least 2 raters in order to assess interrater reliability. Each rater would

make (10*5)=50 rating judgments. The ANOVA formula is:

The formula can be applied to Vector data, where the vectors of data consist of independent

observations on each case, with the vector attributes also independently sampled.

The Intraclass coefficients vary between 0 and +1 (where 0 = no relationship/reliability at all). They

can under certain circumstances assume negative values but this is very rare with anything but

random rating data.
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6.4 ICC-3 (intraclass)

Normally applied to ratings as in an interrater reliability estimation procedure; every case is rated by

each rater; every case is rated by each rater, BUT, in contrast to ICC Model 2, we assume the raters

are THE population of raters (a two-way, fixed-effects model). In essence, each rater rates all

patients on all variables. For example, for a study in which we rate 10 patients on 5 variables, we

would select say 2 raters in order to assess interrater reliability. Each rater would make (10*5)=50

rating judgments. However, it is assumed that these are the only two raters who will ever make

ratings – no generalizability assumed to other raters. The ANOVA formula is:

Here. each vector would be considered a unique vector of data, maybe from two conditions or two

unique sources.

The Intraclass coefficients vary between 0 and +1 (where 0 = no relationship/reliability at all). They

can under certain circumstances assume negative values but this is very rare with anything but

random rating data.

6.5 DSE-s (double-scaled euclidean)

This index computes the squared discrepancy between two Vector's values, then divides this squared

discrepancy by the maximum possible squared discrepancy for that case/variable. Summing and

taking the square root of these “scaled” discrepancies across cases/variables yields a scaled

Euclidean distance. But, the metric of this scaled and cumulatively summed variable discrepancy

distance varies between 0 and some value greater than 1.0. In order to scale this coefficient into a

unit (0 to 1) metric, a further scaling operation takes place. That is, the initially scaled Euclidean

distance is divided by the square root of the number of variables comprising the distance

computation. This second scaling now produces a coefficient which always varies between 0 (no
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distance between variables) to 1 (maximum possible distance between variables given the

designated maximum and minimum values for each variable). 

This dual scaling ensures that the coefficient is comparable between studies and samples where

different variable magnitudes might otherwise distort a conventional Euclidean distance. Further,

because the initial scaling of distance is linear (rather than the non-linear operation used within the

more common solution of converting data to normalized z-scores prior to any distance calculation),

the linear distance relations between magnitudes on the variables remains unchanged. Finally, in

order to complete the process, the double-scaled distance is expressed as a similarity index by

subtracting it from 1, thus yielding the double-scaled Euclidean similarity (DSE-S) measure, where 0

for this coefficient indicates maximum possible disagreement, and 1 indicates that all

cases/variables possess identical rating magnitudes.

The formula for this coefficient is:

The similarity to the Gower coefficient is obvious, but these will produce different coefficient sizes

and distribution densities as the Gower is based upon absolute value discrepancy while the double-

scaled Euclidean is based upon squared discrepancies.

The DSE-S coefficient computes a scaled similarity coefficient, utilizing scaled discrepancies. It

varies between 0 and +1, where +1 is equal to identity between the two vectors being compared.
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6.6 KSD-s (kernel-smooth distance)

This coefficient is based upon a very simple idea that a distance function should be shaped in such a

way that if the simple arithmetic unsigned difference between a person's attribute value and a

target value is computed to be within a certain range, then the computed distance should reflect a

very small distance, almost regardless of the actual distance. But, as that distance grows larger, then

the computed distance should be accelerated in size. In short, an "inertial" effect was aimed for –

translated into a distance metric. The coefficient itself is scaled as a measure of similarity, varying

between 0 (maximal dissimilarity) to 100 (identity). 

The key to using this coefficient is selecting an appropriate value of the smoother constant which

produces the desired inertial effect. The selection choice is application-specific; the function in fact

needs to be calibrated for each specific application, taking into account the costs and benefits of a

sharper or smoother distance/discrepancy function. Person-target profiling applications are the

most readily understood in this regard, where profile similarity can be adjusted to reflect only very

close matches, with even "nearly similar" is reduced to "no-match" with even tiny departures of a

person's profile from a target. Likewise, if a broad screen is required, then the smoothing function
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can be more gradual - providing a kind of "plateau" effect around the target value, before the

discrepancy between person and target is accelerated by the non-linear function.

In essence, this coefficient needs to be "calibrated", to match the "by eye" judgment of the user.

That is, when plotting two profiles, or when deciding whether two values are to be adjudged similar

to one another given the range of the rating scale being used, it is the user who has to decide when

two values are to be adjusted "similar", and not the "mathematics . The KSD coefficient is sensitive

only to magnitude discrepancy (not monotonicity). It also takes into account the range of ratings or

score values from which the person-target, or rater reliability ratings are drawn.

For example, consider the comparison of two sets of scores from two Raters ...

Rater 1 Rater 2

3 4

4 3

3 4

4 3

3 4

4 3

3 4

 4 3

 4 4

 4 4

If we apply the coefficient formula to the data in the table, with a KSD smoother value of 5,

Rater 1 Rater 2 KSD

3 4 45.783

4 3 45.783

3 4 45.783

4 3 45.783

3 4 45.783

4 3 45.783

3 4 45.783

4 3 45.783

4 4 100

4 4 100

 

the average of these 10 rater pairs is 56.63% similarity, or  using  a 0-1 coefficient scaling, 0.566.
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Incidentally, the Pearson correlation for these data is – 0.67, ICC model 2 = – 0.80, and model 3 = –

0.67, while the Gower is +0.80, and DSE-S = +0.78.

Such data will produce highly negative Pearson and Intraclass correlations. Assuming a rating scale

range of 1-5, the KSD coefficient with smoother factor of 5 is: 0.57. If we assume the scores are

drawn from a range 1-20, then the KSD coefficient is 0.97. Clearly, the design of the coefficient

introduces the element of relativity; a score discrepancy of 1 looks reasonably important when the

range is just 1 to 5, but trivial when the range is 1-20.

In order to look at the effect of various smoother values over the measurement range, a interactive

utility program is available from my website which allows a user to select various values and see the

achieved smoothing/plateau effect. This file also contains further help information about the

coefficient.

6.7 Gower agreement

Relative to the maximum possible absolute (unsigned) discrepancy between the two pairs of

observations, the gower discrepancy coefficient indicates the % average absolute discrepancy

between all pairs of observations. When expressed as a similarity coefficient (by subtracting it from

1), it indicates the % average similarity between all pairs of observations.

So, a Gower similarity coefficient of say 0.90 indicates that relative to the maximum possible

absolute (unsigned) discrepancy between them, the observations agree on average to within 90% of

each other's values.

If you change the value of that maximum possible discrepancy, then the Gower coefficient will

change to reflect this, as the discrepancies between pairs of observations are divided (scaled) by

that maximum possible discrepancy value.

E.g. if two observations differ by 5, and the measurement range of each observation is 10, then the

relative discrepancy is 0.5. However, if the measurement range for each observation was say 100,

then the relative discrepancy would be just 0.1.

But that's the whole point of the Gower, it tells you how discrepant (or similar) observations are,

RELATIVE to how discrepant they could have been. A 5-point difference in a 10-point maximum

measurement range is not very good. A 5-point difference between observations within a 100-point

measurement range is pretty accurate.

http://www.pbarrett.net/software.html
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The equation for the gower similarity index is:

The Gower coefficient computes a scaled similarity coefficient, utilizing scaled discrepancies. It

varies between 0 and +1, where +1 is equal to identity between the two vectors being compared.

For example, look at the following scores on two tests, with the minimum and maximum possible

scores for each test between 0 and 50 .. 

  Var1 Var2

1 30 5

2 30 5

3 30 5

4 30 5

5 30 5

6 30 5

7 30 5

8 30 5

9 30 5

10 30 5

The discrepancy between each pair of observations is 25, which is exactly half the maximum

possible discrepancy range of 50. So each paired scaled discrepancy is exactly 0.5, with a resulting

Gower and DSE-s of 0.5.

That really is the logic of a discrepancy-based coefficient in a nutshell. A value of 0.5 tells you that

the similarity between observations is 50% of maximum (which = identity).
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Another way of expressing this is that the average discrepancy between observations is one half of

the maximum possible discrepancy.

However, we have to be careful here.  For the Gower, " the maximum possible discrepancy" is the

range of the data (the difference between the maximum possible and minimum possible values).

The Gower is the average of the absolute discrepancies, divided through by the range, subtracted

from 1 to provide the measure of similarity.

A Statistical Significance of a Gower Coefficient?

If you want a significance test for the Gower, use the Bootstrap program which is available for

download from my website. This computes the empirical sampling distribution for a Gower

coefficient, taking into account the maximum possible discrepancy range, the kind of data (integer

or reals) and the number of observations over which a Gower has been computed. It also allows you

to test the significance of a difference between two Gowers, by constructing the empirical sampling

distribution of the difference between two Gower coefficients, given their respective data

characteristics (sample size, number type, and maximum possible discrepancy of observations in

each sample). 

There is a lot more information about this coefficient and the consequences of its practical

application (and comparisons with other coefficients) in:

Barrett, P.T. (2010) Test reliability and validity: The inappropriate use of the Pearson and other

variance ratio coefficients for indexing reliability and validity. Technical Whitepaper #9, available at:

www.pbarrett.net, from the Whitepapers link. 

The coefficient itself was first presented to the research community in 1971 ...

Gower, J. C., 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857-

874.

--------------------------------------------------------------------
Paul Barrett, (paul@pbarrett.net)

http://www.pbarrett.net/software.html
http://www.pbarrett.net
https://www.pbarrett.net/techpapers.html


Part

VII



Gower program help file v1.0a40

© 2021 Paul Barrett

7 Agreement and Monotonicity

Sometimes, it is important to know whether observations are not only in agreement to one another,

but whether they share a directional relation, and how strong such a relation is. That is, observations

on one attribute tend to increase as observations on another increase, or whether as observations on

one attribute increase, they decrease on the other (the monotonicity principle). The Pearson

correlation and ICC coefficients do provide such information. Coefficients of agreements based

upon absolute or squared discrepancies do not.

As Barrett (2010) has shown, monotonicity and agreement are independent from one another.

Sometimes it is theoretically important that two variables' magnitudes covary; this is the essence of

the definition of monotonicity. The Pearson correlation indexes this monotonicity by first

transforming the raw data, standardizing each variable by its respective mean and standard

deviation, then computing the covariance between the two transformed variables. Absolute

magnitude information is lost in order to enable this scale-free computation of monotonicity. 

But, sometimes, it is as important to know how similar the magnitudes of two variables are to one

another, independent of whether the values covary. For example, the recorded temperature for two

animals over time may be almost exactly equal to one another (to within ± .1 °C) across say 20 time

periods (allowing for random observation and instrument error). Because the error is random

around the same temperature, the correlation between the two sets of observations would be

expected to be zero (no monotonicity). But, an agreement index which is sensitive only to

magnitude discrepancy would show that the similarity of observations is almost identical, given the

range of variation in which temperature would have been able to fluctuate. 

Barrett, P.T. (2010) Test reliability and validity: The inappropriate use of the Pearson and other variance

ratio coefficients for indexing reliability and validity. Technical Whitepaper #9, available at:

www.pbarrett.net, from the Whitepapers link. 

--------------------------------------------------------------------
Paul Barrett, (paul@pbarrett.net)

http://www.pbarrett.net/techpapers/correlations_reliability_validity_Rev_1_July_2010.pdf
http://www.pbarrett.net
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8 Common-Metric Rescaling

Linear Rescaling into a Common Metric

When wanting to display and compare data from variables whose measurement metric is not the

same, it is useful to rescale each variable's values into a convenient common metric. This is

especially the case when displaying data with different ranges in multiple line-graphs and

scatterplots, and for comparing multiple variables with coefficients such as the Gower agreement

index. 

Also, with specific regard to the Gower and other relative magnitude agreement indices, using two

variable vectors with differing minimum and maximum values produces incorrect agreement

measures .. because the relative change in one variable vector is not equal to the relative change in

another (because of the inequality which exists between the respective minima and maxima).

Unlike conventional standardization, which transforms a variable's values by subtracting each

observed value from the mean of all observed values and dividing this difference by the standard

deviation of the values, the rescaling implemented here preserves the relativity between each

variables' observations while rescaling the magnitudes into a common metric. 

For example, displayed in Table 1 are data recorded from an animal over 10 x 10-minute intervals:

average EEG output (dB) over 10 minutes within the 8-12Hz frequency band and  the number of

interactions with other animals observed over each 10-minute period. 

Table 1

If we plot the data using a double-Y line plot, we have ..

Figure 1
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However, the plot might also look like just by changing the right-Y axis values.

Figure 2
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So if you have many such plots to generate, it is useful to express them all in a common-metric, so

that visual comparison is not influenced by the particular range of values used within each plot. In

this way,  the shape and relative magnitudes within each series of values are maintained, but are

now directly comparable across variables. 

The rescaling is achieved by linearly regressing the original magnitude range for a variable onto the

new range, using the original magnitude minimum and maximum for a variable, and the chosen

metric minimum and maximum values (in essence, fitting a straight line between two points in 2-

dimensional space). The result is that the conversion is linear over the range for all values.

The equations are:
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which, for just two values for each variable simplifies into:

So, transforming the data in Table 1 into a new common metric whose values range between 0 and

1, we convert each variable using its own minimum and maximum. 

An important consideration here is what values are to be used as representative of the minimum

and maximum for a variable, the values from the sample of data, or values which represent the

entire possible measurement range for a variable. For example, for EEG, do we use the observed

minimum and maximum values in the sample of data we have observed, or the theoretically

possible range of values (the resolution accuracy of the EEG preamplifier at 1-microvolt, through to

some theoretical maximum value for EEG within that frequency band)?  In general, with more or less
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open-ended -range measurement, using the observed minimum and maximum values in the dataset

is the most straightforward choice. 

So, for Table 1 EEG, using the simple formula:

Likewise for number of interactions, whose minimum and maximum is specified to be between 12

and 63: 

so, for example, the 1st value for EEG in Table 1 is 2.56, which converts into:

The result of the scaling (rounded to 2 decimal places)  is shown in Table 2, and Figure 3:

Table 2
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Figure 3

Now the variation in both variables is now expressed in a common linear metric, allowing direct

visual comparison of lines, trends etc. 
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If, instead of linearly rescaling the data, we had standardized them instead (by subtracting each

observed value from the mean of all observed values for a variable, and dividing this difference by

the standard deviation of the values), the result would be that shown in the last two columns of

Table 3, and Figure 4.

Table 3

 

Figure 4 
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If you look at Figure 3 and Figure 4 closely - you can see there is a slight perturbation in the

magnitudes caused by the standardization transformation (because the divisor of each of the

observation minus mean difference, the standard deviation, is not the same for both variables) -

which is what causes the observed difference in standardized value metric.  

--------------------------------------------------------------------
Paul Barrett, (paul@pbarrett.net)
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9 Relative v Simple Discrepancy

The key to fully understanding the Gower and DSEs logic is to understand the difference between

relative and simple discrepancy.

Simple discrepancy is literally the subtraction of one value from another. It can be expressed as a

signed or unsigned (absolute) difference. 

Relative discrepancy expresses a simple discrepancy relative to the maximum possible discrepancy

which could ever be observed between the two attributes whose magnitudes are being compared.

The problem with simple discrepancy is that. by itself, you have no idea whether the discrepancy is

trivial or substantive. It is not until you compare it to what you could have observed given the

measurement range of each variable /attribute that you can make such a judgment.

For example, a set of simple signed, unsigned (absolute), and relative discrepancies between two

attribute magnitudes might be:

Consider the unsigned or signed differences, without knowing what the maximum possible

discrepancy could have been, these might be trivial or substantive differences. And you'll note, it's

pointless using unsigned differences in any averaging calculation, as the sum of these is not useful

as an indicator of overall discrepancy (in the table above the sum of the signed discrepancies is

zero).

But, when we express the absolute discrepancies relative to a maximum possible discrepancy (the

range) of 7, and compute the average of these, we obtain a value of 0.24 (an average discrepancy of

24% of the maximum possible discrepancy between observations of 7).  To be precise,
0.238095238095238 * 7 = 1.6667 average error over a 7-point range.

But, if the maximum possible discrepancy was in fact 20, then the average relative discrepancy is

now just 8% of the total possible discrepancy of 20). To be precise, 0.0833333333333333 * 20 = 1.6667
average error over a 10-point range.
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The magnitude of error (1.6667) is the same, but 1.6777 error within a 7-point range is meaningfully larger
than a 1.6667 error within a 20-point range.

The relative discrepancy calculation not only achieves a common-metric for discrepancy (always between 0
and 1) regardless of the metric of the observations, but, it allows an investigator to make judgments about
the trivial or substantive size of the discrepancies, bearing in mind just how discrepant they could have
been.
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