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Summary-An extensive series of analyses were carried out on a sample of data from 491 
undergraduate university students who completed Form A of Cattell’s 16PF questionnaire. The 
data was item analysed, factored using both principal component and image analyses, and radial 
parcelled. However. even though five different factor solutions were rotated to a maximum simple 
structure. the 16 factors did not emerge as expected. Radial parcelling also yielded equivocal 
results. Using only psychometric criteria to guide the analysis. three new factor scales were 
generated that satisfied the test of high factor validity and high coefficient alpha simultaneously 
for each scale. The overall solution yielded seven factored scales. Additionally, results were 
reported of a scale factoring of the 16 scales yielding a replicable 4-factor solution. An alternative 
7-factor solution was not replicable among subsamples taken from the total data set. 

INTRODUCTION 

The 16PF Questionnaire (Cattell et al.. 1970) is perhaps one of the most widely used 
psychometric instruments for the measurement of personality. The questionnaire was the 
outcome of Cattell’s researches in the late 1940s and early 195Os, attempting to encom- 
pass the ‘sphere’ of personality initially defined by ratings. Howarth (1976) provides an 
excellent account of the detailed procedure adopted by Cattell in reducing 18000 diction- 
ary terms relating to temperament to the 400 or so questionnaire items used in Forms A, 
B, C and D of the standardized questionnaire. Recently Cattell and Delhees (1973) have 
extended the number of factors to be found in the 16PF to 23, the supplemental scale 
information and augmented items provided by DeVoogd and Cattell (1973). 

Recently, there have been many divergent findings reported by investigators who have 
attempted to replicate Cattell’s factor structures. The more important of these are Levo- 
nian (1961a, b), Eysenck and Eysenck (1969) Howarth and Browne (1971) Comrey (1973) 
and Howarth (1976). Cattell has recently answered some of these criticisms with powerful 
arguments as in his reply to Eysenck (Cattell, 1972) and in his book on psychometric 
methods (Cattell, 1973). Invariably his points have turned on the methodology of these 
investigators, Cattell claiming that poor methodology has resulted in the divergent 
results. However, Cattell himself is not always consistent in his methods as Howarth 
(1976) shows quite clearly. In addition, Gorsuch and Cattell (1967) demonstrating the 
second-order scale factor-structure of the 16PF used parcels of items to assist in the 
factor procedures. These parcels, contrary to Cattell’s own statements (Cattell, 1974; 
Cattell and Burdsall, 1975) on radial parcelling techniques, were ad hoc collections of 
items utilizing marker variables as parcel cluster centroids. This is most surprising given 
his vehement objections to such theoretically poor methods of clustering items. 

The investigation below is an attempt to replicate the factor structure of the 16PF 
using methodology very similar to Cattell’s. Both item and scale principal component 
and image analyses, radial parcel analyses, factor validity analyses and classical item 
analyses are undertaken. Although the data are from Form A only, this nevertheless is 
the most popular form being used by other investigators and occupational psychologists. 
It is of interest to discover whether the scales are still factorially valid and reliable within 
a student population. Results from Barrett and Kline (1980a) and Kline er al. (1980) using 
the Eysenck Personality Questionnaire (Eysenck and Eysenck, 1975) have demonstrated 
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the efficacy of item factor analysis in delineating good replicable item factor scales. This 
is contrary to some investigators who believe that it is impossible to obtain reliable and 
replicable factor structures using single items as variables (e.g. Nunnally, 1978). 

METHOD 

Subjects 

The sample was composed of 241 female and 250 male undergraduate university 
students. The 16PF Form A questionnaires were administered under group testing con- 
ditions with no more than 20 students completing the forms at any one time. Partici- 
pation of students in this study was entirely voluntary. 

Procedure 

For scoring purposes, the s’s responses were extracted from their answer sheets and 
coded on to punched cards. These data were then machine-scored yielding individual 
item and scale information. For both the male and female groups, means and SDS for 
each scale were computed. Following this, the male and female data were combined to 
form a sample of 491 Ss, this sample being used for all subsequent analyses. 

Item analysis 

Classical item analysis was then carried out on this data using uncorrected point 
biserial coefficients as estimates of item-total correlations. Additionally, coefficient alphas 
(Cronbach, 1951) were computed for each scale. 

Principal component and image factor analysis 

A principal component factor analysis (PCA) was implemented upon a 184 x 184 
variable Pearson correlation matrix. As both the work of Velicer (1976a, 1977) and 
Nunnally (1978) demonstrates, with n (the number of variables) > 20, very little difference 
exists between factor patterns computed from correlation matrices with either unities or 
communality estimates in the main diagonal. However, due to the sensitive nature of this 
particular study, image analysis (IFA: Guttman, 1953; Kaiser, 1963) was also undertaken 
in order to provide information as to the level of overestimation of the PCA loadings. 

Factor extraction tests 

For both the PCA and IFA three tests of factor extraction were undertaken: 
(a) The Kaiser factor alpha criterion (Kaiser, 1960; Kaiser & Caffrey, 1965; Barrett 

and Kline, 1982). This criterion is based upon Kaiser’s derivation of coefficient alpha for 
a factor. For each eigenvalue Ai, AZ,. . . , A,,, a coefficient alpha estimate of reliability can 
be computed using: 

ali = (-$-j-)(1 - j!-) 

where n = No. of variables in the correlation matrix. 

Thus, for any li < 1.00, alli is negative. However, unlike the now obsolete PCA Kaiser- 
Guttman criterion (Hakstian and Mullet-, 1973) factor extraction proceeds upon the basis 
of accepting and rotating factors with satisfactory alphas. What constitutes ‘satisfactory’ 
is, of course, dependent upon an investigator’s particular interpretation of the term 
‘reliability’. However, very few investigators would accept a coefficient ~0.3 as being of 
any particular value. For most sizes of li of approx. 1.9-2.0 yield alphas just greater than 
0.5. This is the bound value adopted within this particular study. 

(b) The Velicer Minimum Average Partial Correlation test (MAP: Velicer, 1976b). 
Velicer introduced the MAP test for all types of component analyses. Given A is the n 
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(variables) x m (component factors) orthogonal pattern matrix resulting from component 
analysis, for each factor m in A the partial covariance matrix can be represented as: 

C=R-AA’(forPCA) (2) 

where R = the sample correlation matrix or 

C = (S- ’ RS- ‘) - AA ’ (for resealed R image factoring) (3) 

where 

S-’ = J(diagR-‘). 

Thus the matrix of partial correlations is given by: 

R, = D- 1!2 CD - 1/2 

where 

D = (diag C). 

(4) 

In order to determine the number of factors to extract, Velicer proposed the summary 
statistic 

fm = 22 trijJ2tntn - I)) (5) 
i#j 

where rij is the element in row i and column j of the matrix R, in (4). 

The value of&, is the average of the squared partial correlations after the first WI factors 
are partialled out. The stopping point is the value of m for whichf, is at a minimum;f, 
ranging between 0 and 1. The logic of the test is that as factors are partialled out, the 
value offm decreases to a minimum indicating that the factors are ‘common’. When f, 
begins to increase, the additional factors are viewed as ‘specifics’ accounting for unique 
variance only. Thus partialling out a common factor lowers the majority of values of the 
elements in R,. Partialling out a specific factor, because it has little correlation with the 
majority of the elements, produces a higher value at f min + 1 than at f min: Velicer 
(1976b) demonstrates this with a simple example. 

(c) The machine implemented Scree test (Cattell, 1966) known as AUTOSCREE 
(Barrett and Kline, 1982). 

The Scree test is based upon the slope of eigenvalues plotted against their extraction 
order. When the eigenvalues are successively plotted, a falling curved section followed by 
a straight line (or several) at a much lesser angle to the horizontal is observed. The 
resemblance of these straight line sections to the screes of rock debris running straight at 
an angle of ‘rock stability’ at the base of a mountain led Cattell to propose the name 
‘Scree test’. Cattell (1966) and Cattell and Vogelmann (1977) present some theory for this 
test in addition to an extensive empirical test of the method vs the K-G on various 
plasmodes. However, a cursory glance at Cattell and Vogelmann’s eigenvalue runs sug- 
gests that the plasmodes were too simple in structure. The majority of real data eigen- 
value runs do not yield such invitingly clear breaks! Cattell (1978) has suggested four 
rules for applying the test, stressing that the subjectivity of decision occurs in combining 
the rules and conditions. Herein lies the element of ‘art’. Unfortunately, when faced with 
complex eigenvalue runs, the element of art expresses itself in different decisions from 
various investigators. From the literature, it would appear that only a handful of psycho- 
metrists are capable of correctly detecting the screes from the retained factors. 

In principle, the concept of the Scree test is that of detecting discontinuities within a 
two-dimensional series of values. Simply, given a line function, how does one detect 
breaks in that function? Cattell has proposed a set of rules that unfortunately can quite 
easily be misconstrued by the user. The Scree test in essence is a subjective test. In an 
attempt to automate the Scree procedure, an algorithm was generated by Barrett and 
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Kline that attempts to encapsulate, to some extent, some decision processes taking place 
in choosing scree lines. However, this algorithm is designed purely to find discontinuities 
in line functions at varying levels of sensitivities, it is not concerned with finding 1, 2 or 3 
screes but may find up to 10 or more. 

The algorithm, which for convenience has been called AUTOSCREE is certainly one 
of many possible approaches to the problem and is not necessarily the most efficient. 
AUTOSCREE works by starting off from the lowest eigenvalues, computing a least- 
squares linear regression on a quantity of eigenvalues n, the tangent of slope about this 
line, and the value of 1 - coefficient of determination. The next eigenvalue in the series is 
now added to the previous set of values, the least-squares estimation computed, and now 
the difference between tangents and the difference in error are noted. If either are larger 
than certain test values, the quantity of n eigenvalues are taken to be a scree line. 
AUTOSCREE then begins again under the same conditions from where it stopped. The 
final breaks are detected by an excessive angle deviation between the last scree set and 
the new scree set. Additionally, should any scree line ascend beyond a 20” slope, the run 
is terminated for the set of relevant control conditions. Thus summarizing the details, 
there are three control parameter fields: group size, angle deviation, and error deviation. 
The group size is varied from a minimum of three values to an approximate maximum of 
one third of the total number of eigenvalues. The angle deviation (AD) is varied from 1 to 
5” in 1” steps. The error deviation (ED) control is varied from O.OOOOOO1 to 0.01 in steps 
of ED x 10’. AD controls the final scree line detection, ED controls the within scree 
cutoffs only. Thus the sequence operates within each AD value, each group size contain- 
ing the six ED runs. The decision as to the retained factors is made by observing the 
frequency distribution of stopping points across all control values. Additionally the 
summary frequency data is split into two groups, a high-medium sensitivity angle detec- 
tion range (l-3”) and a medium-low sensitivity range (3-5’). A clear ‘true’ break yields a 
clear stopping point across all angle ranges, a slight ‘true’ break is likely to yield at least 
two decisions. Thus subjectivity now enters the decision process, the investigator having 
to choose the most likely ‘true’ break in the AUTOSCREE analysis. Of course, values of 
the group sizes, angles and errors are ad hoc. The values used here represent the judge- 
ment and experience of the authors from a few hundred tests made with AUTOSCREE. 

As a simple test of the efficacy of AUTOSCREE compared with that of both an 
experienced judge and a novice, 21 sets of eigenvalues were computed from data matrices 
containing from 8 to 90 variables. Three of the matrices were plasmodes, the other 18 
were real data matrices. (See Barrett and Kline, 1982, for information concerning these 
matrices). The experienced judge was the second author of this paper, who has used the 
Scree test for many years and worked with Cattell himself. Thus the 21 sets of computer 
plotted eigenvalue series, each set comprising a 1 :l x i-i, 1:2 x Ai, and 1:3 x ii ratio 
plots were presented to each judge individually. No information as to the origin of the 
eigenvalues was given to either judge. The results of this procedure are given in Table 1. 
The error data was computed by subtracting the judge’s cutoff for a particular eigenvalue 
set from the AUTOSCREE cutoff. As can be seen from Table 1 the AUTOSCREE 
algorithm provides results similar to that of an experienced judge. 

Factor rotation 

From the consideration of the results from these three tests, the retained factors were 
rotated using a modified direct oblimin (Jennrich and Sampson, 1966) procedure, with 
the 6 parameter swept from -30.0 to 0.5 in steps of 0.5. The convergence criterion was 
set at 0.00001 with a maximum of 400 iterations per value of 6. The associated overall 
hyperplane count (HC: +O.l) for each of these rotations was noted, the appropriate 
solution being given by the maximum HC and its associated 6. Then the rotation was 
again carried out around this 6 value in steps of 0.1 to ‘fix’ the solution. (Direct oblimin 
has the attractive characteristic that obliquity can be varied from near orthogonality to 
strong obliquity by varying the parameter 6, thus the solution is virtually unconstrained 
by the rotation method). 
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Table 1. Human judgement vs AUTOSCREE 

Mean 
Mean error squared error SD of errors 

Experienced judge 0.6 3.9 1.9 
Novice - 3.0 22.6 3.1 

Factor validity 

Finally, factor validity coefficients (Cattell and Tsujioka, 1964) were computed for each 
of the factor scales A through 44. The factor validity coefficient of a scale or set of items 
may be defined as the ratio of mean validity (mean item-factor correlation) to mean 
homogeneity (mean inter-item correlation). The factor validity coefficient is, in fact, a 
multiple correlation coefficient, thus it can be viewed as indirectly assessing the similarity 
of a set of items that load upon a factor. If the items are no more than reworded 
counterparts of one or two basic items, then their homogeneity is likely to be high with 
the result that the mean item-factor correlation will reach a ceiling value. The factor 
validity will then be low. Of course, in the converse limit, the factor validity will also be 
low. In this way, the coefficient can be used to assess the validity of any set of items that 
the investigator intends to call a factor scale or at least an item group that measures a 
common component. 

Radial parcel factor analysis 

In addition to the item factor analyses, radial parcel factor analysis (Cattell, 1974; 
Cattell and Burdsall, 1975; Barrett and Kline, 1981) was implemented using the full 
184 x 184 variable intercorrelation matrix. The procedure simply forms parcels of items 
and factors the resulting intercorrelation matrix generated from the parcel scores. Parcels 
in this study were of size 2- and 4-items. The 2-item parcelling procedure was as 
follows: from an unrotated V, retained factor pattern matrix of item loadings con- 
gruences between each row (the item vector) and all others were computed. The highest 
absolute value congruence coefficient indicated the formation of the first 2-item radial 
parcel. These two items were then eliminated from any further searching. That is, all 
congruences computed using either of these two items were removed from the con- 
gruence matrix. This simple search procedure continued until all items were parcelled. 
Although the absolute congruence values were used in the search procedure, the sign of 
this value indicated a possible reflection of scoring for one of the variables in order to 
make the congruence positive. Thus, when restoring the data prior to factor analysis, the 
addition of the values of two items was moderated by a reflection constant of - 1 or + 1 
operating on one item’s response. Having obtained the restored 2-item parcel data, these 
92 parcel variables were submitted to PCA, followed by AUTOSCREE and the MAP 
test, and subsequently the direct oblimin rotation procedure as indicated above. 

In order to obtain 4-item parcels, one can either operate the above procedure on the 
unrotated 2-item parcel V. matrix, or proceed directly from the 2-item parcel identifica- 
tion stage operated on the unrotated V, item matrix. For the purpose of this analysis, the 
latter procedure was adopted. Having identified the 2-item parcel components and hav- 
ing noted the sign of the congruences, the task is now of one generating a new composite 
V, matrix. By adding or subtracting the loadings across factors for each of the two items 
in a parcel, a new row in the composite V, is generated for that parcel variable. If the 
congruence between rows was positive, add the row values. if negative subtract all values 
from one another. Thus a 45 parcel variable composite V,, matrix is found. Generally, 
parcelling of items reduces individual item measurement error and thus provides a more 
clear representation of the factor structure. Full details of the technique are given in 
Barrett and Kline (1981). 

Before any tests of factor extraction were made, it was decided to extract and rotate 16 
factors, and as in Cattell’s (1972) reply to Eysenck, 19 factors. Every effort was made in 
this study to attain the factorial structure represented by Cattell’s 16 factor scales. 
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Table 2. Scale means and SDS 

Scale 
Male (N =. 250) Female (N = 241) 
Mean SD Mean SD 

A 9.312 
B 9.428 
C 14.032 
E 14.336 
F 15.636 
G 9.952 
H 13.116 
I 9.824 
L 9.632 
M 14.576 
N 8.404 
0 10.884 

,“: 11.800 10.848 

2: 10.160 13.132 
Age 23.224 

3.192 10.129 3.023 
1.827 9.390 1.955 
4.071 13.701 3.934 
4.617 12.531 4.146 
5.187 16.436 4.634 
4.283 9.929 3.733 
6.401 13.427 5.538 
4.034 13.672 3.410 
3.366 8.826 3.647 
3.520 14.639 3.600 
2.965 8.846 2.776 
4.458 11.809 3.848 
3.323 9.183 3.110 
3.317 11.461 3.477 
3.577 9.697 3.416 
5.185 15.004 4.782 
8.286 22.203 6.762 

RESULTS AND DISCUSSION 

Scale means and SDS 

Table 2 presents the means and standard deviations for each of the 16 Form A scales 
taken over the 491 Ss. This table indicates that by no standards could the scores of our 
student group be regarded as abnormal. 

Item analysis and coe#icient alphas 

Following the scoring of the data, an item analysis was initiated. The results from this 
were indicative of generally non-homogenous item-factor scales. This is demonstrated in 
Table 3 (below) which presents the alpha coefficients for each of the 16 scales. For those 
coefficients less than about 0.4, some of the scale items correlated less than l/,/n (the 
average correlation of all the n items in a scale with the total scale score). Noticeably, the 
0 and Q4 items were predicting both their own and the 0 or Q4 scale score. Nunnally (a 
severe psychometrist) has asserted that 

“ . . . in many applied settings, a reliability of 0.80 is not nearly high enough. In 
basic research, the concern is with the size of correlations and with the differ- 
ences in means for different experiment treatments, for which purposes a 
reliability of 0.80 for the different means involved is adequate. In many 
applied problems, a great deal hinges on the exact score made by a person on 
a test.. .” (1978, p. 245) 

If this view is accepted, all the 16PF Form A scales are of little or no practical value, they 
remain useful for research purposes only. Saville and Blinkhorn’s (1976) alternate forms 
reliabilities are no better, even with their very large sample sizes. The obvious way to 
improve the reliability estimates is to include Form B scales with the Form A scales thus 
doubling the scale lengths. However, this of course assumes that Form B is in fact an 
alternate form of A. Nevertheless, as Cattell has frequently noted, low homogeneity or 
internal consistency is not necessarily a bad property of a scale, given that its factor 
validity is high. These validities will be examined below. 

Principal components and image factor analysis 

The PCA and IFA of the data was subsequently implemented. Both the MAP and 
AUTOSCREE tests indicated 11 factors from both methods of analysis. The PCA factor 
alpha for 11 factors = 0.58, for 12 = 0.53 and for 16 = 0.49. The Kaiser-Guttman lower 
bound-strictly applicable only to image eigenvalues (because of the IFA properties of a 
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Table 3. Coefficient alpha and validities for the 11, 16 and 19 factor solutions 

16 factor N = 491 19 factor N = 780 19 factor N = 491 11 factor N = 491 
Coefficient Cattell 

Scale alpha Validity Position validity Position Validity Position Validity Position 

A 0.39 0.42 4 0.63 1 0.42 1 0.42 4 
B 0.44 0.70 10 0.61 2 0.70 15 0.71 10 
C 0.52 0.66 1 0.55 3 0.48 3 0.69 1 
E 0.59 0.56 2 0.54 4 0.54 1 0.62 2 
F 0.70 0.77 3 0.77 5 0.76 2 0.73 4 
G 0.59 0.65 7 0.69 6 0.61 9 0.70 3 
H 0.81 0.76 2 0.79 7 0.75 1 0.77 2 
I 0.64 0.84 5 0.74 8 0.83 6 0.84 5 
L 0.45 0.60 4 0.45 9 0.65 4 0.56 6 
M 0.28 0.39 7 0.52 10 0.40 9 0.40 3 
N 0.19 0.43 8 0.41 11 0.45 8 0.46 11 
0 0.56 0.73 I 0.66 12 0.59 7 0.77 1 
:: 0.40 0.41 0.59 0.49 6 3 0.48 0.57 13 14 0.60 0.59 13 5 0.55 0.52 4 8 

0.47 0.46 7 0.64 15 0.47 11 0.48 3 
0.69 0.81 1 0.73 16 0.67 3 0.80 1 

gramian reduced rank correlation matrixtindicated 19 factors. Thus five solutions were 
rotated: the ll-factor PCA and IFA V, matrices, the 16-factor PCA V0 matrix and the 
I9-factor PCA and IFA V, matrices. Generally, the only differences between the PCA 
and IFA solutions were in the second decimal place of the loadings. No gross loading 
pattern changes were observed. The 6 values and hyperplane count percentages for each 
of the solutions were as follows: PCA 11 factors = 6 of 0.65, 59x, IFA 11 factors = 6 of 
0.45, 66x, PCA 16 factors = 6 of 0.45, 64x, PCA 19 factors = 6 of 0.2, 67x, IFA 19 
factors = 6 of 0.3, 73%. The value of 73% of loadings in the hyperplane for the IFA 
19-factor solution compares favourably with Cattell’s (1972) value of approx. 75% for his 
data. Both values being significant P < 0.01 by the Bargmann test (1953). 

However, the 16- and 19-factor pattern matrices do not represent a clear 16 scale 
structure. Only the I and G scales appear to be loaded clearly by their scale items. The 
remaining 14 scales are impossible to ascertain when attempting to interpret the factors 
by accepting loadings > 10.301 as being indicative of significance. Thus the alternative 
method of interpreting these matrices is by the use of factor validities. All solutions were 
checked for difficulty factors based upon concordant item response splits; there were no 
recognizable difficulty factors. 

Factor validities 

Table 3 above presents the factor validity coefficients for the sample data calculated 
from the 16 and 19 PCA factor pattern rotated solutions. In addition, Cattell’s (1972) 
factor validities for Form A from his sample of 780 adults are presented for comparison. 
(His validities are based upon a principal factor analysis loading pattern.) The multiple 
correlation coefficients were left uncorrected (Claudy, 1978) as the effects of such correc- 
tions are minimal given the sample size. The calculation of the factor validities proceeded 
by taking each questionnaire scale in turn, and calculating its validity across all factors in 
the relevant pattern matrix. The highest validity coefficient for that scale on a particular 
factor was taken as the scale/factor validity. Thus the column of figures (Table 3) entitled 
POSITION provide the factor number on which the scale has most validity. Notably, all 
other validity coefficients were very low relative to each scale’s maximum. 

Thus, in comparison with Cattell’s coefficients, a superficial similarity is noted- 
however, regarding the factor positions at which these maximum values occur, it appears 
that many of the scales are not uniquely valid. For example, scales C, 0 and Q4 for the 
16 factor pattern all have their highest validity on factor 1. Cattell’s (1972) factor pos- 
itions were taken from the order in which he presents his factor pattern matrix. Notice- 
ably, all his coefficients are uniquely determined. 
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Ignoring these positional effects, it is pertinent to ask what size of coefficient should be 
regarded as conceptually significant. Taking values greater than 0.6 as being indicative of 
some validity, factors C, E, L, M, N, Ql and Q2 in Cattell’s pattern fail. In the 16 factor 
N = 491 sample solution, A, E, M, N, Ql, Q2, and 43 fail, and in the 19 factor N = 491 
sample solution, A, C, E, M, N, 0, Q2 and Q3 fail. Of course, the value of 0.6 is arbitrary 
but nevertheless this problem of conceptual significance of these coefficients requires 
careful consideration. 

Given the above results, it was concluded that the 16 and 19 factor solutions had failed 
to yield Cattell’s 16 item factors. Thus, 11 PCA factors (as suggested by both the MAP 
and AUTOSCREE factor extraction test results) were rotated to a maximum simple 
structure. Once again, simple visual interpretation of the pattern matrix was impossible, 
especially when attempting to locate the 16 factor scales. Thus recourse was sought in the 
factor validities for the 16 scales. (See Table 3). Given that searching for 16 scales among 
11 factors will yield some validity coefficient overlap, the amount encountered once again 
invalidated the solution. 

Radial parcel analyses 

At this stage, it was decided that radial parcelling of the 11 and 16 factor unrotated V, 
matrices might yield better results than those from any item factoring. Thus size 2 and 4 
parcels of items were generated from these matrices. However, having obtained the item 
parcels, it was obvious that the procedure paired off the items that loaded ‘highly’ on 
each item factor such that any parcel solution rotations would yield images of the item 
factors. This was expected given the results of Barrett and Kline (1980b), however, with 
the unknown quantity of individual item error involved, it was possible that some 
‘sorting’ would have taken place. 

From a consideration of all the results presented so far, it was concluded that Cattell’s 
16 factors were not represented in this sample data using Form A of the 16 PF 
questionnaire. 

Statistically determined factoring 

Thus attempts were made to extract factors using statistical and psychometric criteria, 
ignoring Cattell’s hypothesized structure. These criteria were that factors must yield good 
coefficient alphas, and high factor validity coefficients, and their items must show clear 
item total correlations in a classical item analysis. 

The initial attempt accepted the 1 l-item factor pattern above as indicative of 11 new 
scales. All loadings in this pattern > (0.3 1 were taken as scale items. The new scales thus 
formed contained a few items that were not unique, however, this number was minimal. 
Subsequent item analysis of these 11 new scales yielded extremely poor coefficient alphas. 
PCA factoring of the correlation matrix yielded AUTOSCREE and MAP test results of 
nine and six factors, respectively. Although these solutions were rotated, the results of 
both were, because of very low (even negative) alphas and equivocal factor extraction 
results, discarded. 

The next step was to return to the factor validity coefficients in Table 3. Using these as 
the prime indicators of possible scales, two possible sets of scales were composed. Of 
course, these scales would be composed from whole 16PF questionnaire scales, either 
appended to one another or single scales as in the original questionnaire form. The 
choice of the new scales was determined by the coefficient alpha, factor validity, and the 
sharing of maximum validity coefficients among scales across the 11, 16 and 19 PCA 
factor solutions. From these considerations, seven new scales were chosen for subsequent 
analysis: (1) C + 0 + Q4; (2) E + H; (3) G + Q3; (4) I; (5) L; (6) B; (7) Ql. Thus scales 
A, F, M, N and Q2 were discarded from this analysis. Scales A, M and N had alphas and 
factor validities of such low values that no serious consideration could be given to their 
continued use. Scales F and 42 present a different problem. 42 has a very low alpha of 
only 0.41 while its overall validity is not much higher. However, it shares its validity with 
the F scale which has both a high alpha (0.70) and high average validity (0.75). This 
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Scale 

Table 4. Coefficient alphas and factor validities for the seven new scales 

C scale missing C scale inclusive 

Coefficient Factor Coefficient FaCtOf 

alpha validity Position Scale alpha validity Position 

0 + 44 0.73 0.83 2 C+O+Q4 0.34 0.58 1 
E+H 0.81 0.83 1 E+H 0.8 1 0.81 2 

G -t 43 0.71 0.87 3 G + 43 0.71 0.84 3 
I 0.64 0.86 5 I 0.64 0.81 5 

pL1 0.45 0.40 0.54 0.54 6 4 PLl 0.45 0.40 0.52 0.43 6 4 
B 0.44 0.76 7 B 0.44 0.71 7 

appears to be the same situation as for the scales G and Q3, however, the 43 alpha (0.47) 
is higher-suggesting a psychometrically more sound set of items. Thus while G and Q3 
were retained (a borderline decision), F and Q2 were eliminated from this analysis. 

The raw data was thus restored and subsequently item analysed. The coefficient alphas 
for these seven new scales are given in Table 4. The worrying feature here was the 
behaviour of the C scale items embedded within the C + 0 + 44 composite scale. These 
items were not correlating in any significant fashion with the total scale score, thus 
apparently reducing the scale alpha quite considerably. However, it was decided to 
proceed with a PCA and direct oblimin analysis on the 128 variables, obtaining factor 
validities accordingly. Factor extraction test results were equivocal with the MAP test 
yielding a decision of 6 components, AUTOSCREE a value of 10, with the factor alphas 
ranging from 6u = 0.59, 9or = 0.51, 10~~ = 0.48, 11~ = 0.47. Given that an attempt was 
being made to find seven factor scales, the extraction test results were overridden. Seven 
factors were rotated to a maximum simple structure and factor validities computed 
accordingly. The associated direct oblimin 6 and overall hyperplane count percentage 
were: 6 = 0.5: 53%. The factor validities are reported in Table 4. The coefficients for 
scales E + H, G + 43, 1 and B are satisfactory. However, the values for scales 
C + 0 + Q4, L, and Ql are disappointing. Given the equivocal factor extraction test 
results and the correspondingly poor alpha and validity coefficients for the C + 0 + 44 
composite, it was decided to discard the C scale altogether and begin again with the 
remaining 115 items. 

An item analysis of the composite 0 + Q4 scale yielded a much improved coefficient 
alpha of 0.73. The 115 variables were then PCA factored. The MAP test indicated 
retention of seven components, AUTOSCREE indicated 6 with the factor alphas ranging 
from 6 = 0.58, 7 = 0.54, 8 = 0.50, 9 = 0.47. These results provided sound evidence for 
the retention and subsequent rotation of seven components. The direct oblimin 6 and 
overall hyperplane count percentage were: 6 = -0.7, 55%. The resulting factor validities 
are reported in Table 4. The coefficients for scales 0 + 44, E + H, G + Q3, I and B are 
most satisfactory, those for L and Ql are improved from the n = 128 variable factoring 
but still a little disappointing. However, the results as a whole for this set of scales are 
generally satisfactory. 

At this stage of the investigation, it was decided to postpone any further factor investi- 
gations until a new sample of 16PF data could be factored, the results compared to those 
above, and some evidence of replicated factorial structure found. 

One final result relevant to these findings is some scale factoring of these data reported 
in Barrett and Kline (1980b) where the effects of subject to variable ratios in factor 
analysis were examined. The results again failed to support the hypothesized second- 
order structure of the 16PF. The study required the compilation of six randomly drawn 
samples from the 491 Ss having S to variable ratios of l$:l, 2:1, 3:1, 6:1, 12:1, 18:l. The 
total sample data from the 491 Ss was initially PCA scale factored. It was not clear, from 
the factor extraction tests, just how many factors should be rotated. The MAP test 
indicated only 2, AUTOSCREE indicated 7 and the factor alpha coefficients suggested 4. 
It was decided to rotate both the 7 and a 4 factor solution. These two solutions would 
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Table 5. Subsample MAP and AUTO- 
SCREE decisions 

Sample ratio MAP AUTOSCREE 

1::1 2 7 
2:l 4 8 
3:l 4 9 
6:l 2 4 

12:l 4 6 
18:l 4 7 or 4 

then be compared with the subsample factor patterns. From the final factor patterns, 
Pearson correlations and Tucker congruences were computed between the total sample 
and all subsample factors (reflecting and correcting for factor position where necessary). 
Because the underlying issue in this study was stability of factors-only 4 and 7 factor 
solutions were rotated for each subsample pattern matrix. Table 5 presents the MAP and 
AUTOSCREE results for each subsample data set. Having thus rotated all 4 and 7 factor 
V, matrices, the associative analysis was undertaken. Coefficients >0.75 were taken as 
indicative of solution similarity. From these results it was obvious that the 7-factor 
solution was unsatisfactory. This was viewed as a direct result of overfactoring. (The 
values in Table 5 for the MAP especially and the AUTOSCREE appear to indicate a 
consistent 4 factor structure.) This overfactoring suggests that a large quantity of error 
variance is being distributed across the solutions leading to factor instability. The factor 
alpha coefficients for the rotated 6th and 7th factors from the total sample analysis were 
very low indeed: 6 = 0.27, 7 = 0.09. Therefore, this particular solution was discarded in 
place of the 4-factor representation. 

This 4-factor solution was found to be extremely stable in that the subsample factor 
patterns matched the total sample pattern very closely with associative coefficients >0.80 
for all subsamples except the Ii:1 ratio data. The total sample (N = 491) factor pattern is 
given in Table 6. This result obviously presents an intriguing problem. The very scales 
that were discarded from analyses above are now loading highly on these second order 
factors. The scales do not appear as item factors yet behave as good scales when all the 
items are used as a composite variable. Noting above that radial parcelling failed to yield 
clarity of the item factor scales, it appears that for meaningful measurement, only the 
whole scale score is valid. Yet, the factor validity coefficients are consistently low in all 
rotations. Until the new sample data is analysed-further speculation is pointless. In 

Table 6. 4-factor scale pattern for 16PF (N = 491) 

Scale Factor 1 Factor 2 Factor 3 Factor 4 

A 0.094 0.280 0.732 0.067 
B 0.216 0.01 I -0.150 -0.219 
C 0 807 

0.023 
0.046 0.099 -0.017 

E -0.718 0.266 -0.100 
F -0.021 -0.281 m -0.231 
G 0.176 0.188 0.043 0.720 
H 0.291 -0.313 0.682 -0.054 
I -0.122 0.562 0.28 1 -0.576 
L -0.481 -0.528 0.150 0.073 
M 0.323 - 0.093 - 0.058 -Q&jJ 
N 0.011 0.609 - 0.033 0.088 
0 -0.775 0.142 - 0.095 - 0.040 

;: 0.153 0.08 1 -0.652 0.043 - -0.677 0.052 -0.106 -0.120 

2: -0.820 0.474 0.087 0.092 - - 0.035 0.008 -0.139 0.658 

Loadings > IO.41 are underlined. 
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contrasting this factor pattern with that reported by Gorsuch and Cattell (1967) factors 1 
and 3 in Table 6 are similar to their factors I and II. However, the last three factors of 
Gorsuch and Cattell are not really justified as second orders. With only one or two 
loadings marking each ‘factor’, it suggests that overfactoring has been carried out. 
Extracting eight instead of five factors will necessarily lead to this result, artificially 
splitting broad factors into smaller composites. 

CONCLUSIONS 

An extensive factorial study of a sample (N = 491) of data on Form A of the 16PF has 
not yielded 16 factor scales. Rather, the results have suggested that between seven and 
nine factors will have both satisfactory coefficient alphas and factor validities. The 
psychological meaning of the factors generated within this study has not been discus- 
sed-such a task is premature given the relatively small sample size. A new sample of 
data is being obtained by the authors to cross check the above results. From the results 
of the new data and the old, a better picture of the factor structure of the items contained 
within the 16PF questionnaire may emerge. 
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